e

LL ccecece

LL cceeeee

LL cc cC -
LL cc

LL cc cC

LLLLLLL ccccccc
LLLLLLL “gceeeec

C-Language Compiler

Reference Manual

Copyright (C) 1982 by Jim Frimmel
A1l rights reserved

Reproduction in any manner, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without written permission, is prohibited.

Published by:
MISOSYS
P. 0. Box 4848
Alexandria, Virginia 223@3-0848

*xx NOTICE®**
*«** LIMITED WARRANTY®=%%

MISOSYS shall have no liability or responsibility to the purchaser or
any other person, company, or entity with respect to any liability, loss, or
damage caused or alleged to have been caused by this product, including but
not limited to any interruption of service, loss of business and anticipatory
profits, or consequential damages resulting from the operation or use of this

Should this program recording or recording media prove to be defective
in manufacture, ladbeling, or packaging, MISOSYS will replace the program upon
return of the program package to MISOSYS within 99 days of the date of
purchase. Except for this replacement policy, the sale or subsequent use of
this program material is without warranty or liability.

“E s HARNING®®S®

This program package 1is copyrighted with all rights reserved. The
distribution and sale of this program is intended for the personal use of the
original purchaser only and for use only on the computer system noted herein.
Furthermore, copying, duplicating, selling, or otherwise distributing this
product is expressly forbidden. In accepting this product, the purchaser
recognizes and accepts this agreement.

*** ATTENTION® % *.

A limited licensing agreement is available for the generation of
commercial products compiled with LC and using the LC run time library.
Contact the publisher for details.

MISOSYS
P. 0. Box 4848
Alexandria, Virginia 223@3-0848
7¢3-96@-2998

LC is a trademark of MISOSYS.
LDOS is a trademark of Logical Systems, Inc.
TRS-80 is a trademark of Tandy Corporation.
UNIX is a trademark of Bell Tellephone Laboratories.

)

-

{\;(

e

FORWARD

LC is an exciting product for the TRS-80 series of microcomputers. The
power of the C language is beginning to be realized by many individuals. LC
puts the power of C into your hands. The unique implementation of the LC/EDAS
language development system provides most of the standard C language
capabilities as described by Kernighan and Ritchie in -“The C Programming
Language" as well as an extensive macro assembler.

LC has been under development for two years - going through various
transitions of implementation. The product you now own, has many unique
features. It will provide you with extreme fascination of new techniques in
coding. You not only have the opportunity of learning a relatively new
compiled language, but you also have the opportunity to instill-advanced
programming techniques into your programs. You will get out of LC much more
than what you give it. If you are new to the C language, take the time to
learn it. You will be greatly rewarded.

The tenure of the LC project has been intriguing. That one word
certainly does not sum up the entire history, however. No one word can.
Frustrating, rewarding, despair, hope, and many other words can be added to
the list. During LC's long labor, Jim's wife Sam, had some of her own, giving
birth to a new daughter, Danielle. The encouragement and support that Jim's
family provided him shall not go unnoticed - let alone the deep understanding
of all those late hours at the computer.

A special thanks goes out to Rich Deglin for his continued support
throughout LC's design and implementation life cycle. Rich is also remembered
for his contributions to the installation library of the string and control
functions and his many suggestions of enhancements to the standard library.
I'd Tike to “point* out that Karl Hessinger's plotting functions will be used
by many LC programmers and will be most appreciated.

To dJim Frimmel goes unending appreciation for a job well done. This
astute mind has formed many of the sophisticated techniques inherent in LC.
It has been my personal pleasure to have worked so closely with Jim over the
long LC development time frame. It will be equally pleasurable to continue
this association. Jim's efforts were sparked by the work done on the SMALL C
go?pileg by kRon Cain - one who has certainly provided the foundation for a

ot o work.

Lastly, let me acknowledge the understanding that my wife, Brenda, has
demonstrated. Those long hours spent in putting this reference manual
together were time apart from her. For a newly married couple, it was a noble
sacrifice. It will not be forgotten.

Ao Ll

Publisher

~~

-

FROM THE AUTHOR

The product which you have in your hands, affectionately called “Elsie",
has been a labor of love. She has grown with my children, who have shared in
this labor by giving up time with their father. My wife, Sam, has nourished
Elsie with her understanding, kindness and love, and has sacrificed her time
as well. I have long awaited the day when Elsie would be completed, so that I
could share more with them. This family, whom I love dearly, is my greatest
earthly treasure, beyond price. My Heavenly Father's love and patience, and
the gifts he has blessed me with, are what made it all possible. I pray that
you will share in my blessings in some way, through whatever Elsie brings
your way. '

Elsie has grown from a “small seed" of generosity: Ron Cain's “%Small-C
compiler. Ron published his compiler and placed it in the public domain for
all to hack, and many have done so. Ron Cain deserves our heartfelt thanks
for stirring up interest in the C language and for getting us started. Elsie
was “bootstrapped" using Small-C, and she shows her roots in places. It is my
hope that Elsie will bring the C language to a less experienced audience than
that which the language now appeals to. I am sure there are many who, with
Just a little help getting started with C, will become excellent C'ers.

Elsie would not be here if it had not been for Roy Soltoff of MISOSYS.
He has been a generous benefactor and friend, giving of his time, hardware
and software to bring Elsie to you. His artist's eye also gave this manual
the friendly feel and utility that his products are known for. What makes the
Elsie package especially unique is the work that Roy put into the EDAS IV
assembler. This assembler is the best example of “user-driven® software that
I know of. Roy listens to his users (and responds), and he has gotten quite
an earful from me. Most of all, he has been more patient than I could have
imagined, waiting for my perfectionist dreams to become useful reality. Roy's
bride, Brenda, has displayed this same patience and kindness, with nary a
protest. I'm sure many others are with me when [say, thank you and may God
bless you both.

Elsie has been helped along the way to becoming a product by some good
friends. Karl Hessinger and Rich Deglin were especially generous with their
time and programming skills. Steve Hill and Scott Loomer also helped with
suggestions, advice and feedback. Also, my wife Sam's editorial skills have
resulted in an unusual combination: sound grammar in a technical manual. To
~all of you who have helped Elsie along, thank you and may God bless you.

To my new daughter, Danielle Michelle, who, 1like Elsie, 1is full of
bright promise and laughter.

0. Zierd

September 2@, 1982

R I

o

.

N

PREFACE

Although considerable effort was expended to make the LC reference
manual as complete as possible, this documentation package in no way is to be
considered an 1instructive guide into the writing of C language source
programs. Chapter two is a good definition of the C language as implemented
in LC. Although some may find that complete enough, one reference text is
available that must be added to your library. "The C Programming Language",
by Brian W. Kernighan and Dennis M. Ritchie is the "“bible" of C and is MUST
reading. It s filled with numerous examples and illustrations of each C
statement and also contains example upon example of useful functions. If you
are new to assembly language, the preface contained in the EDAS reference
manual should be consulted for additional information. -

The advice 1is to peruse the contents of both this L reference manual
and the EDAS reference manual to familiiarize yourself with its information
and content. If you have any dquestions concerning the LC development system,
feel free to call or write; however, since the results of a C program rely
heavily on exact syntax, if your question concerns any aspect of the C
language, it must be submitted in writing. All transactions need to be
identified with your registration number(s) so be prepared to provide both
your LC and EDAS registration numbers. It would also be helpful to make sure
your questions are not answered in the manual.

Speaking of registrations, MISOSYS would like to provide you with the
best technical support possible. To provide this support, we need to know who
our customers are. So please fill out the registration form packaged with the
diskette and return it to us promptly - postal card postage is sufficient.
The registration number located on the diskette labels must be entered onto
the registration card and should also be entered in the space provided below.
The registration number must be mentioned on all correspondance with us or
when telephoning for service, so don't lose it.

Registrations: LC EDAS

- iii -

Y

i
e

AN

L RRRKBAATARARRERRRTRERXRRRRR AR ERRRRERRARRER AR TR TRA el
(RRERREXARTARARARXNRARRFARNLRRARRLRTRATRA TR RETARARkTkkR)

Lt MISOSYS LC - C Language Compiler baledelod P
{rkkkk " Copyright 1982, by Jim Frimmel badebalof P

{{HRERRARERERRARRARRERRRRRREERRREARARARNRRRRRARARERAR AN AR DS
CLIRRERRARAXAARNARAEREERRARXXRARKRXLERAARERRREAK AR ERAAARERTRD D

Table of Contents

Forward B P S PP SO ONIOOBSNTELSENEEEPIOTINEENSOCEOISEBERNROLOINOGEOSITOLES 1
From‘the Author PGS SOV 0GP CEONEN OO ENSEIENNEEPEEDS ii
Preface LI IR R B DU IR BN AU BN BN R BN BCBE BB N B BB B A AN Y B U NN BB B B BN Y AN N B I B BN NN N 2 111

Introduction LI IR B B BN BN B BN BN BN BN IR BN IR BN B AR B BE BE BN N B BE B IR BN N BB R NN BN AN O BN N) 1-1
EISie Fi]es R R RN R R R R N NI W I W I IR I W I W I W I SN A 1'3
LC Environment L B A B B B BN BN BE B BE BN N BE BN BE BN B BE BN AN BN BN BN BN BN BN NK BE BN AN N N N N] 1-5
Standard Input/Output cceeeececsccecccocsesccccense
Standard I/o REdirection L X BN O B BN R BN BN BN N TR AR NN N BN BE N BN B BN BN B B O AN]
Standard Header Fi1€S cceeccescrcocccesccsncscncccce
Function Libraries ccceccecececcsccossscccccscscoccs
C]OSing Comments L3N R B BE B BN BN R BN B BN B B R BN AR R BN R B BE BN NN BN N BN BN N AN B NN BN NN)

Language Definition ..ceeeeeececesrccccoscosscsscnnsnns
Program Environment - Functions ...eceeeesecsecseas
Statements - Simp]e & Compound SssseseneseessBeERRREE
Data Representation - Constants seeeececccacssceane
Variable Names (Identifiers) ccceeececesccccccccsces
Data DeCIarations OO OO GHGOCOOPPPNOER IR EOIENIOEIOTEOCERPOERTTETDS
Scope of Variables & Functions eceeeeesocscecaccene
Storage CIasses PO OCH I OCORAREPOETEIOTEENSOSSISISITROIEITDS
-Expre551°ns LN BN BN B BN BN OB BN BE BE BN B BB BN B AN AR BN BN BN BE AN BL N AR BE BN B BN BK B BN B B N AN)
Unary Operators cceescocsscsceccsssecsssscscssscsnee

“Binary operators ..0l;.‘lO.Q.Q....l.........‘......
Statements LI B BN B R B NN BB BN K BB A BN B B RECRY AR BB BE B NN Y AN BN BEBN N AR B B B BE AN)
BREAK l..‘..........0I.‘O..........l....'ll.0." 2’28
CONTINUE LA B BN B BN B BN BE B BY RN BN BN RN BN BE R BN B BN NN BE B RN BN BN AN K BB R BN EE BN B BN N N J 2‘29
DO“WHILE 0000 05 60030808000 C8 S CLIEPEEENCOIRBSESCSIOSOCUES 2‘27

]
O OO B Wk b O 00N

U |
-

hDQOFOFODOﬁOFOhD?JhOthOﬁﬂFJFJFﬂF4
—
(Ce]

FOR P BN CIRP POV UV GNP EEOOPNORNPNEEEPAEEOEIRNRESE 2-27
GOTO OO G 8 0600 SR80 EN BBV POT I EORRESOONPOELEDSEE SO 2‘3“
IF AR ENER " RENNEENEEELEENENENEENENENNEEENSEENRENENNENEENRENN) 2_25

RETURN seeceoececesacaccsssscscossasesacsnsnsnssnce 2-29
SNITCH-CASEQDEFAULT L BN BN AR IR BN BN BN B BN BE BN AN BN BN AR BN BN BN BE BE B BB BN AN BN) 2-25

NHILE PE PN EOP PO PINELINILILNENINLEIOISIOIOSIOIOEOROEOIOIUVIOEOEEEATS 2‘27

LC Operators GUide ceeseececcessceacsccsssescsssscncss
LC Operaltion .s.c.ceeecesccscecncessscceassasacoeassocae
File Specifications vc.cecesesccsscsccccoccsccascns
Compiler Switch Options ceecesoseseccescsccvacsncas
Creating @ CMD File ceceveececcocnceacacccncnncnnss
compiler Directives LR A B B BE IR B B B IR BN B IR BN B A B BN BB N A AR BE N N N 2

A Simple EXercisSe .eceesescsccccscscscsccsnsccscnas

LC LibDPrary coseececsccecososeceeccsossncescensacassoss
Staﬂdard Library (LC/LIB) PP B PR OO UOCOERNOINSEEOICH RSN
Installation Library (IN/LIB) teeeeceveesncanacnene
Primitive Plotting Functions sccveeeceecccecnncs
Advanced Plotting Functions ..eeevevevecccansces
Plotting Control FUNCLIiONS ceevececscoacsccavecs
String FUNCLiONS ..ccievecesncecocacseavsccnnnns

$ 8 3 ¢ 3 8

«

@.f>f.f.f.f-f-?)h)h)h)h)&u(»
PRI NN PO A SO N 2
WS

e - Second Edition 1982

Control Functions «eceecw seosasencasssccssoesesen
F]oat‘ing POint Libl‘al“y (FP/LIB) 0000000008 000000BCTD
Single Precision Operations .ccccececccscccsccse
Double Precision Operations cccccecocecccecscses

Data Conversion Functions cececcccccscccccccocss
Advanced Topics 980000008 006 ¢OEIEHOSIOLNOCN IO OO SN S0 ESL
Utilizing Assembly=Time Options .cccecoscscconccscs
ARGS 0'000..'.0.0..0.00.0‘OOOOOOCOOOOGOOQOQGQ!.O
FIXBUFS 6600000000066 000800060000000000R8C0000DGS
FPLIB 000000080 OCROE0O00IOOCDD0OO0ICOFPOROICCOEOSSOOCES

KBECHO 0008088000V DGECOVDOO00EDOLOEABOIONOODIESOODO

MAXFILES 0 PDOIBRNCHIOLOROIVDOOOOOOBOOOCPEORNODOOOS
REDIRECT 009000 000Q0VOTVOROIPOOCOERPNOEEDOODRGROEEIDDS
ZVAR CGH OO RODPOOCOIOOOOEVODOOOOODAVVIOVOLODOGOEOOCODOGEGED
Separate Cmpi]ation 202000000030 092009P00VWSQROOCGROEDCGO
USing the ‘G]Oba] option 000000 CODGGOOOOCNSESEES

Using Extern and stat1c © 00 6000 EOOORSTOSIIONINOOIDNOOODN

Assembling Separately Compiled Modules ccecoocee
Creating User Libraries .ccccoceccccececccascccnccs
In-Line L1brar1es 00008 PWIROOODBOHNOODLOSOVOEEBOGEOEBOL
PDS Libraries 0O 00 PHDO000ODOSONE0000O00QS0GESOSO
Assembly Language Qutput Structure ..ceccescccocess
Program Memory Map .ccccccoscesccccsvecsscccscss
LC ﬁaﬁ?ﬁs PO OO0 OE GO OGP OOOCPLOOeOONOODOOOPOCIITOOOOOROGDY
Lc Identifier Output P P DOOBHETOOEOIAIODOONBOOEODLE
Run-Time Subroutines DO VOGSOV DOODPOONOOEINO SO OOD
Assembly Language Interfacing ceccoccccescccscesccs
Register Usage 0 000D OOLOVCOOINDTA0CAR0C00000D000E0C
Argumﬁnt Passing PO D00 OCOOOCAIOOEDODOOOOO0OOOQONSO
Labels and Constants cccccesscoccocccssscccsacns
Hhen Thiﬂgs GO Hrong 900 0.082000000000000Q0000OHOGOBGBOODL
Cﬁmpilatian Errors PO 0O PO AGPRODEBO00DO000COSTOIS
Assemb]y Errors 0 0VOOCVODODNIDOBIOOVRIDIDODOSIOOSDO

Appendices Q00 K0P20000D000000QQIVOIOCNDUSDIOOODOOIOSOALOODO

operators RO ORONVTRO0RPRPOOODQOOTDODO0O0O0O00NOBOBOS

L1brary Functio"s GO0 SOV DOORDOOGOOOIROODODAIOOGDGOOS
compi]er Error Messages 0000008002030 0000000000Q0OCGCS
Sample Programs Q.....Q...b..0.'0"..‘...,.........

§pcund Edition 1982

“~y

(-

iy

LET'S MEET ELSIE

Befcre diving into E]sie; we suggest that you do the following, at a
minimum: :

1> Read the entire introduction to get an idea of what LC is all about.

2> Make backup copies of the distribution diskettes. Elisie is released
on two distribution diskettes. The diskette labeled "LC%, contains the LC
compiler and all support libraries. The second diskette 1labeled “EDAS",
contains the macro assembler and editor and various EDAS support utilities.
We suggest that you make one set of archival backups and store them away in a
secure area (safe from dust, dirt, magnetic fields, etc.). Then make a
working backup of the distribution diskettes. The procedures for. making
backup copies can be located in the UTILITY section of your LDOS user manual
under “BACKUP“. For your information, LC is distributed on data diskettes.

3> Create an LDOS system diskette with a maximum of free space. If you
are going to BOOT from this diskette, then you will need a configuration that
includes the LDOS keyboard driver at the barest minimum. Also, if you are
using a Model I, use the CDO/FLT filter in your configuration to filter the
video driver. The filter presents more usable character indications for the
characters, “[%, "\%, “J*, **", and """. This "working system diskette" can
‘be created by using the LDOS PURGE utility on a fresh backup of LDOS. You may
remove all files except SYSP-SYS4, SYS6, SYS8, SYS1¢-SYS12. Keep any other
file you use frequently (for instance, BACKUP and FORMAT). .If you are using a
double density system, follow steps <3A>. If you are using a single density
system, follow steps <3B>.

3A>-A 40-track double density minimal system diskette per
the above has about 144K free. Copy EDAS/CMD from the
working EDAS diskette. Then copy all of the files from the
working LC backup to this LC system diskette. This should
still leave some work space. Use a data diskette in your
second drive for LC source files and all files output by LC
and EDAS,

38> A 35-track single density minimal system diskette per
the above has about 57K free. Copy EDAS/CMD from the
working EDAS diskette, then copy LC/CMD, LC/JCL, LC/ASM,
LCMACS/ASM, and STDIO/CSH from the working LC backup to the
new system diskette. We'll call this diskette your LC
System diskette. Now remove the LC/CMD, LC/JCL, LC/ASM,
LCMACS/ASM, and STDIO/CSH files from the working LC backup
(the one you Jjust copied FROM - not the system disk that
Just received those files). Re-designate this disk your
working LC Data disk. In a two drive system, your work
files (LC source and output files) will need to be stored
on this LC Data disk. Therefore, make a few backups of this
disk to use for various LC programming sessions.

4> Notice that LC requires a two drive system. If you have a one-drive
system, you overlooked the machine requirements noted in the LC
advertisements and in the catalog. We would not want any user so frustrated
with trying to utilize the LC compiler system on a single-drive computer.

L]
]

THTRODUCTION

LET'S MEET ELSIE

5> If you are really anxious to proceed and create a working C-language
program, turn to the OPERATOR'S GUIDE page 3-1# and note the "“simple
exercise”. Place the LC system diskette in drive @, the LC data diskette in
drive 1, and proceed with the EXERCISE.

6> Read the rest of the LC wuser's manual. Pay particular attention to
the OPERATOR'S GUIDE and the LANGUAGE DEFINITION chapters. Skimming 1is OK for
techn}ca] details, but get a feel for where things can be found in your LC

7> Have fun with Elsiel

2 INTRODUCTION
1«2

)3

A

LET'S MEET ELSIE

ELSIE FILES

ZETBUIBIIVSSS

Elsie comes complete with everything you will need to turn your LC
source programs into executable CMD programs. There are many files on your
distribution diskettes: a compiler, an editor/assembler, utilities,
libraries, and JCL files. Here is a description of some of these” files and
their uses:

LC/CMD

This is the LC language compiler. LC accepts as input, C source code
files, and outputs an EDAS Version IV compatible assembly source file. In
order to organize files in a structured manner, LC source code files have a
file/extension of “/CCC* and LC output assembler files have a file extension
of “/ASM",

LC/LIB

This 1is the standard function 1library. It is an implementation of the
portable 1library available under most installations of C compilers. These
functions allow programs to be written which will be directly usable under
other C language systems that have the standard 1library available. The
standard functions perform such tasks as input/output, dynamic memory
allocation,—standard 1/0 redirection, and string handling. The standard
library was designed to be compatible with the standard library under Western
Electric's UNIX operating system.

FP/LIB

- e up -

This contains the LC floating point function library. LC does not have
floating point variables built into the language itself. However, this
library supplies access to the floating point routines in the TRS-8 ROM
through functions. Single and double precision arithmetic, as well as
trigonometric and transcendental functions, are included. FP/LIB also
includes functions for converting between ASCII, integer, single and double
precision variables.

IN/LIB

The installation function library 1is contained in this module. These
functions supply graphics plotting, string manxpu]atwon, certain LDOS entry
points, and other TRS-8¢ features.

INTRODUCTION

LET*'S MEET ELSTE

STDIO/CSH

.........

The sfandard 1/0 header file supplies constants and definitions which
are needed to use the standard I/0 library (LC/LIB).

wwwwww

This file is the primary assembler source file assembled by EDAS. It
accesses your “"main® program and establishes the neccessary interfacing
between your program and the LC runtime modules needed to make a “complete"

M .
CMD program P

LCMACS/ASM

B D) € e O D @ G .

This file contains the #option defaults and assembly language macros
referred t2 by the compiler and used by the assembler. This file is always

» > - e men e o + E 1o " o an € b IACHKM &£
automatically accessed by EDAS when assembling the LC/ASH file.

CDO/FLT

oooooo L

This file is a video filter for the Model I machine. It provides a more
reasonable and less confusing display of the characters: [, \, 1, =, "

.t INTRODUCTION

1«4

LET'S MEET ELSIE

LC ENVIRONMENT

LC was designed to be compatible with C programs written and intended to
run under UNIX. Thus some features of UNIX were incorporated into the design.
These features include standard 1/0 devices, standard I/0 redirection, device
independence, command line arguments, and dynamic memory allocation.

To make C a portable language, the interface within a program to the
external world is isolated in a standard 1ibrary. A program written in C
using only the standard functions to perform input, output and memory
allocation can be transported in source code form to another sytem,
recompiled, and run with minimal changes. The LC system includes a . standard
iibrary which 1is compatible with programs developed uﬂdrr uufX. Thus,
programs developed under LDOS with LC wiil run under UKIX - as weli. The
reverse is also true, except in cases where features not 1mp1emented in LC
are used in the program developed under UNIX.

LDOS runs on a variety of machines, with many varied configurations of
1/0 devices. Any program written for one particular environment running LDOS
can run on any other, provided that the standard library is utilized. The
programmer should bear this 1in mind when writing programs to avoid
conversions when migration to a new system becomes necessary.

SPRATRUBER AR
1.8

LET*'S MEET ELSTIE

STANDARD INPUT/OUTPUT

BRTBEBSI R RTRIBBER

Any program generated by LC will normally have three files ‘automatically
opened when the program begins execution. These files are standard input,
“stdin" (normally the console keyboard); standard output, “stdout® (normally
the console display); and standard error, “stderr*® (normally the console
display). The program can access these files without opening them by using
standard library functions since the LC standard library automatically opens
these standard files. They are also automatically closed when the program is
exited as well. Thus, the program which uses the standard I/0 files
exclusively can deal with input and output and leave the opening and clasing
to the LC standard library.

~y

.t mmgauc‘?xow

B

P

At

LET*'S MEET ELSIE

STAKDARD 1/0 REDIRECTION

TR ERIECREBIBEIITIZIRIS

The standard I/0 files normally operate to and from the user's console.
However, a facility is inherent within the LC standard library to permit you
to “re-direct" any of the standard [/0 devices - thus the term “I/0
redirection". The wuser can give a file specification that will be used in
place of the normal specification when a standard file is opened. This is
done on the LDOS command line when the user executes the program.

When the left angle bracket symbol, "“<", appears on the command line,

followed by a file specification, that file specification is used when the

standard input file is opened. Similarly, the right angle bracket ~symbol,
“>%, causes substitution of the standard output file specification, the ">>*
causes standard output to be appended to the redirected file/device, and the
number sign symbol, "“#", causes substitution of the standard error file
specification. Spaces are NOT permitted between the redirection character and
the file specification.

It may not be immediately obvious how this feature can ‘be used. Here is
an example LC program that illustrates the straightforward™ use of standard
I/0 redirection. The following program can be used to copy any file to any
other file (remember that "file" can be any device or LDOS disk file).

/* CLONE - copy standard input to standard output */
#include stdio/ccc

int ¢;

main ()

{ “while ((c = getchar()) != EOF) putchar(c); }

The example program simply copies the standard 1input to the standard
output until end of file 1is reached. Once this program is compiled and
assembled it can be used to copy any file to any other. For example:

CLONE <CLONE/CCC
will display the file clone/ccc on the system console. The command:
CLOKE >*PR

lets the user type to the system printer. If disk file copying is needed, the
command : :

CLONE <INFILE/ASM:1 >QUTFILE/BAK:2

will copy the file “INFILE/ASM:1" to the file “OUTFILE/BAK:2". If the user

wishes to have a printed log of any error messages that a program puts out,
use something like :

- LC TESTLIB #*PR

Any messages that LC outputs to the standard error file will be re-directed
to the printer device in lieu of the console display.

-
P

IWTRQEUCIIG%

LET'S MEET ELSIE

STANDARD HEADER FILES

EVTESRLVRTETIRUBBBRE

Standard header files are files which contain definitions peculiar to a
system. They usually take the form of “#define® statements and “extern"
statements within the header file. In order to use certain . libraries, a
corresponding header file should be included (using the ™“#include*
:§?tement). The file extension of ®“CSH* is used for "LC Standard Header®

es.

A program to be compiled and linked with LC should have the file
“STDIO/CSH® included to compile properly. STDIO/CSH also defines various
system dependent parameters, such as end of file (eof) and end of line (eol).
{stdout>, <stdin>, and <stderr> are addresses in the standard library whicl
do not need to be defined before use.

The following 1listing 1s representative of the STDIO/CSH file included
with the LC package. ‘

/* ELSIE STANDARD I/0 CONSTANTS =/

g¢define EOF -1

#define eof -1

#define eol 13

#define EOL 13 .
g#define FILE char -~
#define NULL
#define TRUE
#define FALSE
#define true
#define false
¢#define OFF
#define ON -

[l SRR R Yo Y

IHTRODUCTION
1 - 8

- el
Naivg

;

LET*S MEET ELSIE

FUNCTION LIBRARIES

Commonly used LC functions are collected into FUNCTION LIBRARIES. The
functions 1in a library can be used by the programmer without the need to
rewrite or recompile the functions needed. Once an LC program has been
compiled, it can then be linked during the assembly phase with the functions
it requires. Only those functions necessary for the execution of the program
are linked to the compiled program.

Certain functions required by many programs are included in a special
library called the STANDARD LIBRARY. The standard library is the common
denominator between all C language installations. Programs written using
functions in the standard library are easily transported to any® other
computer supporting a C language system with the standard library
implemented. The most important aspect of the standard 1library is that it
allows the details of each system's peculiar operating environment to be
hidden from the programmer's view. The standard library provides the
functions for input/output, memory allocation, and character set
manipulations. In addition, a collection of subroutines used by the compiled
% program to perform basic operations 1is also supplied in the standard

ibrary.

Users can also create their own collections of often-used functions that
can be used in the same manner as the standard library. These USER LIBRARIES
reduce the programming time, compilation time, and program complexity
necessary 1in creating new programs. Functions, once defined, written, and
tested, can be added to the user library and need only be referred to by name
in later programs. The linking process brings the functions into subsequent
programs without the need to recompile. If you want to create and maintain
your own libraries, you will need the Partitioned Data Set (PDS) utility.

Special purpose 1libraries may also be created for wuse in particular
types of applications. For instance, the functions specific to the TRS-80
are provided with your LC package are in the special purpose library, IN/LIB.
This is an example of how the C language avoids the trap of non-standard
extensions being included within the language.

THTRODUCTIOR

1 -9

LET®S MEET ELSIE

CLOSING COMMENTS

LC encourages the use of structured programming methods. Unless one
uses the "goto" statement heavily, LC practically demands a structured
approach to program construction. This 1is not to say that writing programs
with LC will automatically make you a good, structured programmer. This is a
skill that is developed by learning and applying the basics.

Some understanding of structured design concepts is necessary in order
to effectively use LC. Probably the first frustrating thing that novice LC
programmers will encounter, especially if their experience is limited to
BASIC and assembly language, is ‘the discouragement of the use of "“goto“.
Kernighan and Ritchie, in THE C__PROGRAMMING LANGUAGE, state that the “goto”
is never necessary, and in practice it is almost always easy to write code
without it. The concept to understand is that the "goto's” are hidden within
the program statements. LC provides, in a coherent, understandable form, the
program constructs that you have been building out of ™goto's".

Last but not least, several texts are available that should be part of
your library. The first, THE C PROGRAMMING LANGUAGE by Brian W. Kernighan and
Dennis M. Ritchie (published by Prentice-Hall), 1is the Bible of the C
language and is a required part of your own library. We will refer to this
book throughout this manual by the abbreviation, *K&R®, for Kernighan and
Ritchie. Two other books, ELEMENTS OF PROGRAMMING STYLE and SOFTWARE TOOLS,
by Brian W. Kernighan and P. J. Plauger (published by Addison-Wesley),
present a good foundation of structured programming concepts. Prentice-Hall
also publishes THE C PUZZLE BOOK by Alan R. Feuer. This book can be used to
test your understanding of the C language. It has proven itself to be quite
usefyl in testing out the intricacies of the LC compiler.

‘ IHTRODUCTION
Loe 1

LANGUAGE DEFINITION

PROGRAM ENVIRONMENT - Functions

EBIZURAIISETIINTZTITDTISLUSRETBIT RIS

The C language is, in a word, functional. The basic unit of program
construction when using LC is the function. Every LC program is a collection
of functions. Each function is a collection of statements that work together
to achieve (hopefully) a useful, well-defined, purpose.

Each function can have information passed to it when it is invoked
("called"). The elements of information passed to the called function are
denoted as arguments. In LC, arguments are copied onto the stack. The -
function can then access and use the "“local" (known only to the called
function) arguments, leaving the original copy of the arguments ;ganged
Each argument is defined at the start of the function. Functions also’ return
values to the functions that call them. In. LC this value is always a l6-it
number, The value returned can be compared to, placed in & variable, etc.
Functions can appear . in an arithmetic expression anywhere that a constant
can. ﬂ '

Here is an example of a function:

square(num)
int num;
{ return num * pum ; }

The function, square(), returns the square of a number; in other words,
the argument, “num*, is multiplied by itself and the result is returned.
Arguments are listed in parentheses after the name of the function, separated
by commas. These arguments must be passed by the calling function in the same
order as they appear in this list.

The BODY of the function is the group of executable statements that are
within the braces "{" and “}". Actually, the grouping of statements in
between braces denotes a special kind of statement called the COMPQUND
statement. The compound statement is fully explained in the section on LC
language statements.

Every LC program has a special function called “"main" which is always
the entry point to the program. When referencing a function within this
narrative, we will put "()“ after the name to identify it as a function. This
is close to the way it looks in an LC program. The function, main(), calls
other funct1ons, which in turn call other functions, etc... Thus, each
program is an hierarchical structure of functions, with main() at the top of
the hierarchy.

The LDOS command line which invokes the LC program is passed to the
function main() using two parameters, "“argc" and "argv". One LC program can
invoke another program by using the cmd() function. When the called program
finishes, a special function, exit(), is used to return a value to the
calling program. Programs can call other programs, passing any arguments

using “argc* and “argv". In a way, each program appears as a function to
other LC programs and to LDOS.

EXVIRONMENT
PR

LANGUAGE DEFINITION

Please scrutinize the illustration of functions in the following
example: : ‘

main()
{ /* The *main® function ...
execution begins here!
*

say_hello();
do_work();
say goodbye();
. exit(@); /* a normal exit, no error code */
} /* sorry, we can't "goto* any of the functions below. */

say_hello() PoN
{ puts(*Hiyalll%); putchar(eol); }

say_goodbye()

{ puts(*Bye y'all!l!!*); putchar(eol); }

do_work () “

{ while (not quitting time)
{ attach(nut,bolt);
pass_on(widget);

: ENVIRORMENT
2.3

[

LANGUAGE DEFINITION

STATEMENTS - SIMPLE & COMPOUND

To create an LC function you have to state the action to be taken, using
LC language STATEMENTS in the desired combination. Certain special statements
are built into the language to provide the necessary programming constructs
(sequence, iteration, selection). You may be surprised, at first, by the
limited number of statements built into the C language. The authors of the
language wished to maintain the generality of the programming statements,
forcing any special features to be outside of the programming language
itself. Other languages often have extensions in the form of statements to
provide specialized features, leading to incompatible versions of the same
language. BASIC is a well-known example of a language extended in far tpo
many different ways. The C language avoids this situation by only previding
those statements necessary for structuring the program's logical flow and by
placing all special features into function LIBRARIES. Function libraries are
nothing more than collections of commonly used functions. See the section on
the LC libraries in the INTRODUCTION for more information.

Simple LC statements always end with a semicolon “;", the STATEMENT
TERMINATOR. The LC compiler depends on the semicolon to tell when a sinple
statement ends. Any number of simple statements may be entered, one after the
other, to form a SEQUENCE of statements that are executed one at a time,
first to last.

The brace characters, *{* and "}", are used to enclose a sequence of
statements to form a COMPOUND statement. A compound statement can be used
anywhere a simple statement can be used. Thus, the body of a function (that
portion enclosed in braces) is just a special form of compound statement.

For example:
nl = §;
is a simple statement. However, the statement:
{
h=h/2; xd=2x0+h/2; p=ydD+h/2

x=x@+1*32; y=yf+18; u=x;va=y;
+H+i; p(1, 1);
}

is a compound statement.

STATEMEMTS
2 -3

LANGUAGE DEFINITION

DATA REPRESENTATION - CONSTANTS

Numbers and characters must be entered in your LC program in certain
ways in order for the compiler to understand them properly. A fixed value to
be used in an LC expression is called a CONSTANT. '

Where Jjust a decimal number is required, you can enter it just as you
write it. A leading 2ero indicates that the constant is in another base. A
leading zero followed by a string of digits indicates an OCTAL CONSTANT. A
leading zero followed by ‘X' or ‘x' indicates that a hexadecimal constant
follows. Thus, the decimal number, 255, can be represented as 98377 or. @xFF,
as desired.

~y

If the variable to be assigned the constant 1is not big enough to contain
the constant, only the least significant bits (LSB) of the number are stored.
This is, in effect, storing the remainder of dividing the constant by 256 or
65,536, depending on the variable size. No warning 1is given when this
happens, so the programmer must be sure that the variable can hold the
number. ‘

CHARACTER CONSTANTS supply a way to specify the code for a character
which does not depend on any particular character set. A character constant
is a Tlist of characters within single quotes (apostrophes). For instance, the
character constant 'A' is stored in the computer as the -number 65 (in
decimal). Again, it is up to the programmer to assure that the number of
characters between apostrophes can fit into the variable being assigned. If
more characters are specified than can fit, only the last one or two (as
needed) are used.

When a sequence of characters is needed, a STRING can be specified by
enclosing the characters between quotes (sometimes called “double® quotes -
i.e. ®*This is a string®). LC does not place all of these characters into a
variable but rather the ADDRESS of the first character of the string. Thus,

when the string, “"testing, 1 2 3%, is used in an LC program, the characters

between quotes are stored in memory, and the address of the first 't' is used
in the expression where the string was specified. You can say that the number
generated by LC to represent the string really POINTS to the string. The
subject of POINTER variables, which are handy for manipulating strings, will
be discussed later.

There are certain control characters that are needed frequently in
programs, but which differ from machine to machine. These can be represented
in C programs using ESCAPE SEQUENCES, to provide a machine-independent
constant. The backslash character, ™"*, 1is called the ESCAPE CHARACTER and
denotes the beginning of an escape sequence. A letter following the escape
character indicates which control code is being specified. Also, certain
characters that would otherwise be difficult to represent in strings and
character constants are generated by following the backslash with the
character. These escape sequences are shown in the following table:

CONSTANTS
2o~

-~

Jo—

LANGUAGE DEFINITION

R R R R N S NS T S S E NS SSSRNIRRRTITITLSISTRTATIRETIR

| Escape |
| Sequence Control Code ASCII code used by LC :
/BT BISS ERIDTRIISEESS -+ 4+ 4+ 4+ 3+ 1+
|
| \n,\N NEWLINE character x'gD' (R |
\t,\T horizontal tab x‘'g9' HT
\b,\B backspace x'g8' BS
\r,\R carriage return x'gD* CR
\f,\F form feed x'gC' FF
\\ backslash x'SC' backslash
I\ single quote - x'2C' apostrophe |
\g null X'08* null byte .

* double quote X'22' double quote ~y
| |

In addition, any binary code can be represented in a string or character
constant by following the backslash with a numeric constant. This is done by
following the backslash with up to three octal digits. An extension which is

not normally allowed in the C language 1is offered 1in the LC language as a

convenience to microcomputer " users who are only familiar with hexadecimal.
The backslash may be followed by an ‘'x' and one or two hexadecimal digits.
Either of these two methods result in an 8-bit character constant.

For example, the character 'A' can be represented as '\x4l' using a
hexadecimal escape sequence, or as '\1@1' in an octal constant. Similarly, to
place a carriage return at the end of a line, the following three methods
could be used:

"An example of a normal escape: \n*
“An example of a hexadecimal escape: \x@D"
“"An example of an octal escape: \@l5*

When a charactér escape sequence is used within a string, the actual
value of the escape sequence 1is stored in a string (i.e., only one byte of
data per escape). Thus, the string:

"\n\x@d\g15"

is only three bytes 1long in memory once the program is compiled and
assembled.

CONSTAKTS _
2 -5

LANGUAGE DEFINITJON

VARIABLE NAMES

The names given to identify variables, functions, macros, and labels are
called "identifiers® and all follow the same rules as to their format. LC
identifiers may be of any length (be practical) and must start with an
alphabetic character {'A' through 'Z', 'a' through 'z'} with the rest of the
characters- in the name consisting of upper-case or lower-case alphabetic
characters {'A' through ‘Z', ‘'a‘' through 'z'}, numeric characters {# through
9}, or the underline character {_}. LC will accept an underline as the first
character of an identifier, however EDAS will not; therefore, do not start an
identifier with the underline character.)

LC remembers only the first eight (8) characters of an identifier, so
these first eight must be unique. ~y

Elsie 1is case-sensitive, i.e., recognizes the difference between
lower-case and upper-case in identifiers. Thus, “EOF“, "eof", and “Eof" are
all different identifiers to Elsie. However, identifiers which must be
written out in assembler source code for EDAS are converted to upper-case,
since EDAS does not allow lower case assembly language code. A good, simple
rule to follow is to use UPPER-case for-macro constants only., and lower-case
for all other identifiers., Since macro identifiers are not written to the
assembly output file, they will not conflict with any other identifiers which
are the same, except for case differences.

——

. VARIABLES
‘ 2 -6

¢

LANGUAGE DEFINITION

DATA DECLARATIONS

LC variables must always be declared before use. The standard procedure
is to declare variables at the beginning of the program (globals) and at the
beginning of each function (locals).

Character variables are stored in eight bits, or a byte. The
declaration: "

char ¢, string[81];

establishes a character variable named “c" and a character array named
“string”. Arrays of one dimension are allowed. v

A1l other variable types (short, 1long, int, unsigned), as well as
pointers, are stored in sixteen bits. The short and long declarations are
provided in the interests of portability. The declarations:

int a;
short b; short int b2;
long c; long int c2;

are all acceptable declarations, and all result 1in the same size integer
field. This is acceptable, since the C language does not guarantee that a
“long" will be 1longer, or that a “short® will be shorter than integers.
Integers declared in this manner are signed, 1.e., their most significant bit
is regarded as a sign bit. Their values can range from 32,768 to 32,767
(decimal). Unsigned fields do not have a sign bit. They range from @ to
65,535 (decimal) and are declared like this:

unsigned u;
unsigned int u2;

Arrays of one dimension are allowed for short, long, int, and unsigned
types. ,

Pointer variables are different from the types described so far, in that
they normally contain the ADDRESS of a data item. For example,

char *cp;

declares a pointer variable named “cp". The asterisk denotes INDIRECTION,
i.e., that the data item is referred to indirectly through the pointer
variable "cp®. The address of the data item must be stored in the variable,
“cp®, before it is used as a pointer to access a data item. To refer to the
data itself, an asterisk is placed before the name, e.g., *cp denotes the
data item. An example of practical use follows:

DECLARATIONS
2 .7

LANGUAGE DEFINITION

getit(cp)
char *cp;
{ while ((c=getchar()) != eol & c¢ != EOF)
{ *Cp = C;
+Cps
}

*cp=NULL ;
) return ¢;

The function, getit(), inputs characters continually from the standard
input until end-of-file or end-of-line characters are encountered. When
getit() is called, the pointer argument, cp, contains the address of a buffer
area. One by one the characters are placed in the buffer, (*cp = ¢), and the
buffer pointer is incremented (++cp).

Pointers may be declared for any data type. An alternative way of
declaring a pointer 1is to leave out the size in an array declaration. For
example,

int count(];

declares an integer pointer, “"prime*. There is good reason for this method of
declaring a pointer. Pointers may be INDEXED to get to the ®nth® item in an
array. Using the example above, count would contain the address of the
beginning of an array of short integers. “count[@]* denotes the first
element in the array, and "count[22]* denotes the 23rd element.

No matter how a pointer is declared, either method of using the pointer
may be used as the programmer sees fit. Thus, "*count" and “count[@]* refer
to the same data item and may be used interchangeably 1in the same program.
Using “*count* is a little more efficient, however. :

Pointers may point to other pointers. This bombshell of a statement is
probably toe much for you after the last few paragraphs; it must be said,
however. LC allows pointers to have more than one LEVEL OF INDIRECTION. This
can be declared several ways:

shine()'
{ char *names(];
char *(*words);

L ° L o ° L L L] L] ® [&

Both of these declarations result in the same effect: a pointer which points
to a pointer which points to a character field.

Pointer variables may have up to 32 levels of indirection. However, the

practical limit 1is the ability of the programmer to keep track of all this.
In general, two levels of indirection are all most folks can take.

More information and examples can be found in the reference text, “The C
Programming Language”, by Kernighan & Ritchie.

. DECLARATIONS
2 -8

=

i

LANGUAGE DEFINITION

SCOPE OF YARIABLES & FUNCTIONS

Variables or functions which are declared outside of any function, i.e,
are not parameters to functions or declared with braces, are called
“external®. They are external to all functions. External variables and
functions can be used from any of the functions within the module being
compiled. Using the “extern® statement, an external variable or function may
even be accessed from another, separately compiled, module. Please do not
confuse “extern" and external. External (to all functions) variables and
functions can be declared without the “extern" statement. The “extern"
statement is explained in full detail below.

Variables declared within a function are called “local®. Functions may
not be defined within another function, as is the case with the Pascal
language. However, a function may be DECLARED *“extern® so that it may be
accessed within the currently defined function. Local variables may not be
accessed from any other functions. They only exist for the function in which
they are declared. Even within the function, a local variable can only be
accessed in the block in which it is declared. Remember, a block is a section
of code contained within a matching pair of braces.

Local variables can have the same name as external variables, or local
variables declared in different blocks. If a local variable has the same name

as an external variable then the 1local variable is the one accessed when used
within the local block. In the following example:

int same;
--funk (same)
{ return same; } /* return local copy */
hunk ()
{ if (block_1)
{ int same;
) /* some code could go here */

else
{ char same;
) /* some other code here */

}

every declaration of "same" was a unique variable. Although 1legal, the
declaration of local variables with the same name within the same function is
not recommended. This type of trickery, as shown in hunk(), needlessly causes
confusion and is easily avoided.

SCOPE
el

Y

LANGUAGE DEFINITION

STORAGE CLASSES

BURBBSSRRIITRB

Variables and functions may be declared as being in certain classes.
These classes specify where variables are to be stored. The classes available
in LC are: auto, static, extern, and register. The storage class of an object
is specified by placing the class name in front of the normal declarationm:

auto char c;
static int ai[28];

STORAGE CLASS - AUTO

Variables which are declared “auto® are stored on the stack. This is tfie
default for variables declared within a function, so the declaration may
therefore be omitted. Local variables which are "auto® are created afresh
each time the function in which they are declared is called. This allows
functions to be reentrant and recursive. Functions may not be declared with
class “auto® since a function must be declared outside of any other function.
As K&R say, the C compiler is incapable of compiling code onto the stack!

The scope of an auto variable 1is the block (within braces) in which it
is declared. All other portions of the code being compiled are oblivious to
the existence of the auto variable, and in fact there may. exist other
variables with the same name.

The auto class 1s illegal for functions and other external definitions
(any variables declared outside of a function).

STORAGE CLASS - REGISTER

S an o o 2

Variables declared in the register class are regarded as auto variables
by LC, since the Z-8F has no extra registers available for use as register
variables. Register variables are stored on the stack in the same manner and
are also 1llegal outside of a function.

The scope of register variables is the same as that for auto variables.
STORAGE CLASS - EXTERN

The “extern® storage class allows an external variable declared in one
module to be accessed from another module. A "module® is what is processed by
one execution of LC, i.e., one set of C source input. Let's say that the

following declaration:
int choice;

exists in module 1. If module 2 functions need to access this same variable,
the declaration:

extern int choice;

.t STORAGE CLASS
¢ -16

et

\\

k\r;_

A3
"y

LANGUAGE DEFINITION

would allow the access needed. LC will not reserve any storage for “choice"
in module 2, since the storage class, "extern", tells LC that storage has
been reserved in another module.

The programmer MUST ensure that the declarations are compatible between
modules. In other words, all "extern" declarations must match the external
declaration (declaration without “extern") by having the same type, size, and
amount of indirection. Otherwise, LC may access the variable in incorrect
ways.

The extern statement may also be used to declare what a function returns
before it 1is defined in the program. This “forward" declaration a}lows a
function which returns something other than a signed integer to be defined
after it is used. If the forward declaration is not given and a function is
?s-yet-undefined, the compiler assumes that the function returns a signed

nteger. .

STORAGE CLASS - STATIC

Static objects are stored in declared, fixed memory space. Their
behavior is the same as that of external variables; their scope is more
limited, however. Static variables declared outside of a function can only be
accessed by functions within the module being compiled. Other (separately
compiled) modules cannot get to them by declaring them ‘“extern". Static
variables declared outside of all functions are accessible to all functions
within the module. Static variables declared within a function are similar in
scope to auto and register variables. They can only be accessed in the block
in which they are declared. Thus, two static variables with the same name may
be declared in different functions.

Functions may also be defined as "static", making them only accessible
from within the current module. However, since LC is a one-pass compiler, the
definition of a static function must precede any reference to the static
function. This is because the compiler assumes that an as-yet-undefined
function is an external function.

STORAGE CLASS - DEFAULTS

When d variable is declared by only stating the storage class:

auto xl; register x2;
extern x3; static x3;

the variable type is assumed to be "int". This is a perfectly acceptable
shorthand way to make integer declarations.

When the declaration of a local (declared within a function) variable
has no storage class, LC assumes that the variable is an auto variable. A
function declared within another function body is assumed to have a storage
class of external. The compiler regards the declaration as if an ‘“extern"
statement preceded it.

.
»

STORAGE CLASS

2 I

LANGUAGE DEFINITION

External declarations which do not have a storage class declared are
special entities. They belong to the implicit c¢lass, “external®, and may be

referenced from other (separately compiled) modules which declare the
variable as “extern®.

. STORAGE CLASS

Z2 - 12

Rl

e

~,

LANGUAGE DEFINITION

EXPRESSIONS

BEEIIJITTZI

One of the most powerful features of the C Tlanguage is its expression
capabilities. The amount of work that can be done by one expression is
sometimes mind-boggling. A quick example:

(end_of_file = (c=getc(file))==EO0F)) ? fclose(file) : ++count ;

This convoluted statement will get a character from a file and place it
in the variable, “c*. The character is compared to the value "“eof" which
indicates end of file; the result, true or false, is placed in the variable,
“end_of_file". Finally, if it was the end of the file, the file 1is , closed.
Otherwise, a counter variable, “count®, is incremented to provide a édunt of
the characters read.

The example was a bit exaggerated, and expressions this complex can be
quite hard to understand. Two statements must be made about the complexity of
expressions in the C language.

The programmer who does not fully know and use C's
expression capabilities is seriously handicapped, unable to
use the full power of the C language.

On the other hand, a quotation from THE ELEMENTS OF PROGRAMMING STYLE by
Kernighan and Plaugher is appropriate:

~“Everyone knows that debugging 1is twice as hard as
writing a program in the first place. So if you're as

clever as you can be when you write it, how will you ever
debug it?"

The word “maintain® could be substituted for “debug" in the quote above,
and it would still be valid. You must be able to understand later what you
wrote into your program. If others are going to have to maintain your
program, the principle of KISS (Keep It Simple, Stupid) should prevail. This
is not intended to discourage the use of complex expressions. Just keep in
mind that the more operators involved in an expression, the more difficult it
is to properly place parentheses and keep the precedence of operators
straight.

There are two kinds of expressions in many computer languages: logical
expressions and ‘arithmetic expressions. Logical expressions are usually for
comparing things and for making choices. The result of a logical expression
is either true or false. Arithmetic expressions result.in a number. Usually
an assignment to a variable 1is made to save the result of the arithmetic
expression, or it is passed as an argument. In many language implementations,

only one type of expression may be used in certain contexts. For instance,
the BASIC program statement:

1660 A= (C<=8B)

attempts to assign to A the result of the comparison C to B. This is not

-
»

EXPRESSIONS
N B

LANGUAGE DEFINITION

allowed in many implementations because they are expecting an arithmetic
assignment. Even if some BASIC's allow it, it is best not to do this type of
assignment, in order to keep programs relatively portable.

Another situation is shown in PASCAL:
IF A := (B < C) THEN BEGIR

where the PASCAL compiler expects a boolean expression between IF and THEN.
Even if A is a boolean variable this assignment is not allowed in most PASCAL
compilers. This is not intended to denegrate PASCAL. There are good reasons
why the authors of PASCAL did things this way. However, the C language does
not draw distinctions between types of expressions within the context of the
program. The distinctions are made in the types of operators instead.

PRIMARY EXPRESSIONS

D ES A U D D CD OB WD S TR D A T W D D D

The elements which are manipulated by operators in an expression are
called primary expressions. The basic elements which make up a primary
expression are identifiers, constants, and strings. Identifiers are the names
of variables and functions. Function and array identifiers effectively
resolve to the address of the function or array, while all other var1ab1e
identifiers resolve to the contents of the variable. Constants are character
or numeric (decimal, hex, octal) values. Strings resolve to the address of
the first character of the string.

The operators which LC provides for stating primary expressions group
left to right. This means that the left-most operator is interpreted first.

The three primary operators supplied by LC are: isolating parentheses,
subscripting, and function invocation.

(expression) /* isolating parentheses */
primary_expression [expression] /* subscripting */
primary /_expression (expression 1ist) /* function invocation */

ISCLATING PAREWTHES ES

When the order in which an expression is to be evaluated conflicts with
the precedence of operators, the isolating parentheses provide a way around
the conflict. The expression within parentheses is evaluated first, before
the result of the enclosed expression 1is used in any expression outside the
parentheses. For examle, when preﬂirﬁing the parcentage of up~time for any
equipment, the following formula is used:

MTBF

availability = -
MTBF < MTTR

MTBF = mean time between failures
MTTR = mean time to repair

When writing this formula into a C expression a conflict occurs because the

. EXPRESSIONS
Z - 14

S

v

LANGUAGE DEFINITION

division operator takes precedence over the addition operator. If the
expression is written like this:

up_time = mtbf / mtbf + mttr

the result will always be mttr plus one. This is because the division is done
before the addition. To avoid this, the expression can be stated as follows:

up_time = mwtbf / (mtbf + mttr)
to achieve the correct result.

Parentheses can be used on either side of an assignment operator. At the
risk of ~ confusing the reader with as-yet undefined operators, we nevertheless
provide an example using pointers. In certain cases during the use of pointer
arrays, indirection must be performed before subscripting into the data item.
Since subscripting takes precedence over indirection, this kind of expression
must be written as follows:

example(arg)
char *arg[]; /* pointer to a char pointer array */

/* wrong way - accesses third pointer */
/* instead of third character. */

*arg[3] = @ ;

/* right way - zero's the third character of */
-~ /* first string */

(*arg)[(3]1 =0 ;

SUBSCRIPTING

Subscripting is denoted by a subscript in brackets following a primary
expression:

primary_expression [subscript]

If the primary expression is an array name, or a pointer to an array, the
subscripted expression returns the element denoted by the value of the
subscript. C arrays are subscripted from 2zero, i.e, the first element in an
array is numbered zero.

Function 1identifiers may not be subscripted. A primary expression
denoting an array of pointers to functions may be subscripted. The primary
expression must indicate the size of the object being subscripted (char, int,
pointer) or the subscript will produce an -error message. For example:

x = 25[31;
is invalid.

EXPRESSIONS
2 - 15

LANGUAGE DEFINITION

FUNCTION INVOCATION

- R WD G P O G G0 WD KD O U D aN S e o

A primary expression followed by parentheses will cause the function
denoted by the primary expression to be called. Arguments may be passed to
the invoked function by placing them 1in the parentheses, separated by
comma's. LC is very liberal about the primary expression. ANY valid primary
expression can be invoked as a function, regardiess of the type of the
primary expression. Thus, it is perfectly acceptable to write:

(Bx0960)();

‘to call the function at hex location P@6@ (This would call the @PAUSE routirg
in the TRS-8@ ROM).

Any number of arguments can be passed to the called function. Care must
be taken that the number of arguments passed 1is the number that the function
expects. Otherwise unpredictable behavior may result (certainly not correct
behavior). If a variable number of parameters must be passed, then a control
indicator must be passed to tell the called function how many arguments there
are (for example, the fprintf() and printf() functions in the standard
library). A1l arguments listed in a function invocation must appear on the
same line in the LC source file. This is not a limitation imposed by the C
language, but by the LC implementation. Arguments can be .-any valid LC
expression, including other function calls. The arguments are evaluated from
right to left, i.e., the right-most expression 1s evaluated first. The

programmer should not rely on this order of evaluation since some other

implementations of the C Tlanguage evaluate them left to right. Statements
like this one:

funk(arg++, arg2larg]):

will‘cause different elements of arg2 to be passed to funk() when different C
compilers are used. Stay away from this sort of trickery if you can.

UNSUPPORTED PRIMARY EXPRESSIONS

_ The primary operators, “.® and “->%, which are used with structures and
unions are not supported (structures and unions are not supported either).

: EXPRESSIONS
7 - 1B

g

s

AN

LANGUAGE DEFINITION

UNARY OPERATORS

Unary operators operate on one ocbject (hence the name). If more than one
unary operator operates on the same object, the operators are evaluated right
to left. The unary operators supplied by LC are:

} OPERATOR OBJECT DESCRIPTION {
| |
| * expression indirection, |
| means “object at..." | oy
| & lvalue pointer, |
| means “address of...“ |
| - expression negates the expression, [
| . "minus expression® |
| ! expression logical complement, |
| “not expression® |
| - expression one's complement |
| of expression |
| ++ lvalue increment and save |
I in lvalue I
| - lvalue decrement and save |
| in lvalue |
FERXREERBBRERBVEBRBERBALUR TR TN EEARITETRRREZEEBEERETEAREEIRZIZRRRER

[)

A1l unary operators must appear before (prefix) the object, except the
increment and decrement operators. The "“++" and "--" may appear after
(postfix) the object also. The term “lvalue* means an expression which
evaluates to the address of a data element or pointer field. Constants,
function identifiers, and array names are not lvalues. The term derives from -
the observation that "lvalues"” are the only expressions allowed on the left
side of an assignment expression.

(3 1]

The indirection operator can only operate on a pointer expression. Its
meaning is effectively “object at ..." The address contained in the pointer
is t?e address of the object referred to by this type of expression. For
example,

see_pointer (pointer)
: %har *pointer; /* a character pointer */

/* first print the address passed in pointer */
printf(*address is: %d “,pointer);
/* now print the data at that address */
printf(“data is: %d ", *pointer);

}

will print both the address (contents of the pointer variable) and the data
at that address (result of the indirect expression).

.
-

-UKARY OPERATORS
? 17

LANGUAGE DEFINITION

0&0

This unary operator effectively means “address of..." or “pointer
to...". It evaluates to the address of the lvalue it precedes.

When the unary negation operator precedes an expression, the result is
the two's complement negative of the value of the expression. When the '-'
precedes an unsigned or pointer expression, the one's complement of the value
is taken. Since all expressions in LC are evaluated using 16-bit arithmetic,
the expression is negated for the full 16 bits. ~5

Ill

The unary logical complement operator, or *not® operator evaluates to
false if the expression is true and to true if the expression is false. False
is defined ac @ and any non-zerg value is considered to be true. However all
LC operators which result in true or false use one (1) as the value for true.
Thus, the least significant bit of the result indicates true or false.

-

The one's complement operator inverts every bit in the éxpression. No
regard is given to the type of the expression.

|ﬁ3. L.

The increment and decrement operators may be used either before (prefix)
the operand or after (postfix) the operand. The operand must be an lvalue or
lvalue expression. In either case the contents of the lvalue is incremented
or decremented and stored back into the lvalue. The difference between prefix
and postfix is whether the result of the expression is incremented or not.
Prefix means that the value after the increment or decrement is the result of
the expression. Postfix means that the value returned by the expression is
the value before the increment or decrement.

UNSUPPORTED UNARY OPERATORS

The *"(type_name)* and “sizeof® operators are not implemented in LC.

URARY QRERATORS
7 . iR

© fen

/

[ata

LAy

»

LANGUAGE DEFINITION

BINARY OPERATORS

BEITEBIATTBLEIT RS

Binary operators act upon two expressions together. The type of the
result depends on the type of the two expressions. If the type of any of the
expressions is “char", “short*, or "long", it is treated as an integer. If
one expression 1is unsigned, the other expression is treated as unsigned as
well, and the result is unsigned. If one expression only is a pointer, the
result of the expression is a pointer of the same type. If both expressions
are pointers, the result is unsigned.

When several binary expressions are concatenated together (without
isolating parentheses) the order in which the binary expressiops are
evaluated depends on the precedence of the operators in the expression. In
the expression,

a+bz*c

the evaluation of “b * c" precedes the evaluation of the addition, since
multiplication has a higher precedence than addition. The expression is
evaluated like this:

a+ (b *c)

As previously described, isolating parentheses can be used to change the
order of evaluation. To have the addition performed first, the expression can
be written:

(a+b) * ¢

Each class of operands is described below in order from the highest
precedence to the lowest. Note that when all the operators in a complex
expression have the same level of precedence they are evaluated in a certain
order; right to left or left to right. It can be said that a class of
operators “group" left to right, or right to left. If the order of evaluation
between like operators does not matter, the operator is said to be
associative. Here is an example of how the order of evaluation affects an
expression:

a/b/c/d
This expression is evaluated a follows:
((a/b)/)/ d) '

Thus, the division operator is said to group “left to right*.

BINARY OPERATORS
? - 19

LANGUAGE DEFINITION

R RN N R A N A RSN S T EESEEIRNIENETEI RIS REILABS

| PRECEDENCE OF BINARY OPERATORS
|) (Highest to lowest)

MULTIPLICATIVE OPERATORS - group left to right

| expression * expression multiplication
expression / expression division
expression % expression modulus (remainder)

S P
ADDITIVE OPERATORS - group left to right
expression + expression addition

| expression - expression subtraction
SHIFT OPERATORS - group left to right

| expression << expression shift left
expression >> expression shift right

| RELATIONAL OPERATORS - group left to right
expression < expression less than
expression > expression greater than

| expression <= expression less than or equal to
expression >= expression greater than or equal to

| EQUALITY OPERATORS - group left to right

| expression == expression equal to

= expression != expression not equal to
BITWISE AND OPERATOR - associative
expression & expression bitwise and
BITWISE EXCLUSIVE OR OPERATOR - associative

' expression © expression bitwise exclusive or
BITWISE INCLUSIVE OR OPERATOR - associative

| expression | expression bitwise inclusive or
LOGICAL AND OPERATOR - groups left to right

| expression && expression logical and

| LOGICAL OR OPERATOR - groups’ left to right

} expression || expression logical or

| CONDITIONAL QPERATOR - groups right to left
expression ? expression : expression
ASSIGNMENT OPERATORS - group right to left i
lvalue = expression simple assignment

| lvalue <op>= expression compound assignment

(<op> is any binary operator except logical,
relational, or conditional operators)

" BINARY GPERATORS
3 o 20

7y

N
RN

LANGUAGE DEFINITION

The multiplicative operators take precedence over all other binary
operators and group left to right. When the result of multiplication
overflows 16 bits, the left-most (high-order) bits are truncated. Since
integer division is used, the fractional portion of the result is lost. The
result of division is always truncated toward zero. The modulus operator
returns the value of the rema1nder in the integer division of the two
expressions.

|+n’ (N |

The additive operators result in the addition or subtraction of the two
expressions. In subtraction, unsigned subtraction only takes place when both
expressions are unsigned. If one of the expressions is a pointer -and the
other is not, the other value is adjusted to reflect the size of the object
pointed to. Thus, if “p* is a pointer, “p + 3" returns the address of the
fourth object pointed to by "“p". If p points to integers, then LC
automatically doubles the offset to account for the two-byte elements.

KLY, O

OB D D D O .-

The shift operators shift the left-hand expression by the number of bits
indicated in the right-hand expression. Zeroes are shifted in to replace the
bits shifted out. If the right-hand expression 1is negative or zero, no
shifting takes place. If the right-hand expression is 16 or more, the result
is always zero.

e, 0>l’ |<,0’ >ul

Relational operators result in a true (1) or false (P) value, depending
on the indicated condition.

TR Y P

The equality operators, *equal® and “not equal", respectively also
return true (1) or false (#) depending on the two expressions' equality.

l&l

The bitwise AND operator does a bitwise AND with the two expressions.
Each bit position in the result will be set to be one if and only if both
corresponding bits in the expressions are equal to one. This is useful for
isolating individual bits within a word by using a "mask" as one of the
expressions. Any bit in the mask which is set to zero will cause that bit in
the result to be zero. Any bit set to one will cause the bit in the other
expression to remain the same.

BINARY OP:RATORS

LANGUAGE DEFINITION

[Rad]

The bitwise exclusive OR operator. Each bit in the result of an
exclusive OR is set only if the corresponding bits in the expressions are
opposite, i.e., 1 and @, or § and 1. If they are the same, that bit in the
result will be zero. This can be used to complement bits, using a “mask”
expression. Any bit which is 1 in the mask will cause the corresponding bit
of the other expression to be complemented in the result. Any mask bit which
is @ will pass the corresponding bit unchanged into the result.

The bitwise inclusive OR operator. Each bit in the result will be set “%o
1 if either of the corresponding bits in the expressions are equal to l. This
can be used to set any particular bit in an expression to one by using a
*mask® expression. If a bit in the mask is equal to 1, then the corresponding
bit in the result will be set to 1. If a bit in the mask is equal to @, then
that bit in the result will be the same as in the expression being
manipulated.

I“.

e an on

The logical AND operator results in a true (one) orfalse (zero)
condition, depending on the relationship of the two expressions. The result
is true only 1if both expressions are true (non-zero). Moreover, if the first
expression is false, the second is never evaluated.

- o

The Tlogical OR operator returns a true (1) result if either of the
exprassions is true (mom=2ero). If the first expression is true, the second
expression i1s not evaluated. '

0? :l

The conditional operator gives the C expression repertoire the
equivalent of an if-then-else construct. It can technically be classified as
a binary operator since only one of the last two expressions is evaluated.
The first expression is evaluated as true (non-zero) or false (zero). Then,
if the first expression was true (non-zero), the second expression is
evaluated as the result of the expression. Otherwise, if the first expression
was false (zero), the third expression 1s evaluated for the result. The
conditional operator groups right to left: ‘

a?b:c?d?te:f:g
is evaluated in the following manner:
atb:(c?(drte:f):g)

." BINARY OPERATORS
2 =22

EK\hT?M

~

LANGUAGE DEFINITION

Either or both of the second and third expressions can contain conditional
expressions.

L S L] LI LI T LR P TI DS> LI T e U L

- on - - W - - - - .

The assignment operators place the result of the right-hand expression
into the object denoted by the left-hand expression, after performing the
indicated operation with the contents of the Ilvalue when an assignment
operator other than 's' is used. The simple assignment, '=', places the
result of the right-hand expression unchanged into the object denoted by the
left-hand expression. The compound assignment operators have the form:

3

expression_l <op>= expression_2
and 1s evaluated 1ike this expression:
expression 1 = expression_l <op> expression_2

The first form is more efficient since expression_l only need be evaluated
once.

BLMARY CRERATOARS

LANGUAGE DEFINITION

LC STATEMENTS °

BERBBACTRIBBED

LC statements are used to specify the action to be taken by the program.
The statements given in the program are executed one after the other. Certain
statements (eonditional and looping statements) will direct the order of and
conditions for execution of other statements. Some definitions of statements
in the following text require .that a substatement be included in the
statement. Any place where a substatement is required there may be one simple
statement or more than one statement combined in a compound statement.

SIMPLE STATEMENTS

T D AP D D D D D W T TP T O

Simple statements are of three types: expression, declarative, and
control. The declarative statements are described fully in the previous
sections on functions and variables. The type, size and scope of functions
and variables are declared in declarative statements.

A simple statement always ends with a semicolon. The semicolon is the
§TATEMENT TERMINATOR. It is not a statement separator as in the PASCAL
| G 'S

- - e Frem e em . . - - P e T B b o dn o o 5
anguage. It 15 always required at the end oF & simpie statement.

COMPOUND STATEMENTS

D > T T W D €D O D T S B T B WD

The left and right brace characters, *“{"and "}", are used to indicate

the beginning and end (respectively) of a compound statement: A compound

statement, also called a block, can be used anywhere that a simple statement
may be wused. Thus, wherever LC's syntax requires a statement, more than one
statement may be given by enclosing them in braces. Within the compound
statement there may be any combination of simpie and compound statements.

The compound statement has the format:
{ <declarations> <statements>)

No declarations or statements are required, although the use for an
empty block would be as a null statement of sorts. The declarations should
appear before any statements. Any of the statements may in turn be another
compound statement. No semicolon is required after the compound statement.

The only place where a compound statement 1is required instead of a
simple statement is in the body of the switch-case statement. The body of a

function 1is one compound statement. Here are some examples of compound
statements:

func()
{ /* the body compound statement */
asb; /* simple statement */
if (ac)
{ /* another compound statement */
c=a;
b=a;

. STATEMENTS
2 - 24

LANGUAGE DEFINITION

} - /* end of compound statement */
return atb+c;
} /* end of function body compound statement */

NULL STATEMENT

A null statement is a sort of place~-holder. LC requires that a statement
be given in certain places. If no action is needed in the place required then
the null statement can be used. No action is taken by the null statement.

The null statement is simply a statement terminator (semicolon) by
itself, with no preceding statement. P

null()
{ /* do-nothing function */

N /* a null statement */
} ,

EXPRESSION STATEMENT

An LC expression followed by a semicolon 1is called an expression
statement. The expression is performed when ‘it is encountered. LC will allow
an expression that has no assignment in an expression statement, even if it
does nothing. Expression statements are used to assign values to or modify
values of variables, or to invoke functions. Some sample uses of expression
statements: '

- retcode = call_function() ; /* call a function */
asb=c=07 /* make a, b, c equal to @ */
++counter ; /* increment a counter */

IF STATEMENT

if (expression) statement

if (expression) statement
else statement

The *if* statement gives the programmer the capability to decide whether
a statement will be executed. The criterion for the decision is the result of
evaluating the expression. The expression may be any valid LC expression. If
the expression evaluates to true (non-zero), then the statement is executed.
If the expression evaluates to false (zero), then the statement following the
“else" (if any) is executed.

“If* statements may be nested, i.e., the statement within an *®if"
statement may be another “if" statement. Too much nesting of *if" statements
can be hard to follow, so moderation is advised.

JTATEMEKTS

LR

LANGUAGE DEFINITION

Some examples of *if* statements: L~
if (x<@) x= -x~; /* absolute value of x */ - .)9

if (i<=@) { i=x; b=a; } /* compound statement */
else --i; /* and an else clause */

/* nested if statements */

if (past_twelve)
{if (before_six) say(“good afternoon®);
else say(“good evening®);}

else say("good morning”);

SWITCH-CASE STATEMENT P

oD G U D G P 0 D P I DGR T D) A R P

switch (expression) { <switch statement> ... }

switch_statement = statement
case constant expression :
default :

The switch-case statement allows program execution within the
<switch statement> to be determined by the case and default prefixes. The
expression in the switch statement is evaluated first, then, if any of the
constant_expressions match the result, execution begins 1mmediately past that
case prefix. If none of the cases match the result and there is a default
prefix, then execution begins at the default prefix. Otherwise, when no ;l,
matching case is found, no statements in the switch_statement are executed.

The switch-case statement MUST have a compound statement as its
substatement. This is the only case where this is true. The default and case
statements may occur in any order within the body of the switch-case.
However, A CASE OR DEFAULT MUST PRECEDE THE FIRST STATEMENT in the
switch-case. If this is not done, none of the cases will ever be executed (LC
limitation). [LC 1.@a requires that the "default" must be the last prefix in
the switch-case-default construct.]

The break statement is used to exit the switch_statement.

switch (month) u
{ case january: case october: case december: case july:
case august: case march: case may:
days = 31; break; o
case september: case april: case june: case november:
days = 30@; break; :
case february:
{ if (leap_year) days = 29;
else days = 28;
break;
) .
default: days = @; error = true;

2

LANGUAGE DEFINITION

NHILE STATEMENT

while (expression) statement;

The most basic form of looping is prov1ded in LC by the “while*
statement. Simply stated, while the expression results in a true (non-zero)
value, “statement® (also called substatement) is executed. The expression is
evaluated before each time the substatement 1is executed. Therefore, the
substatement may be executed from zero to any number of times depending on
the expression.

If more than one simple statement must be placed in the Tloop
substatement, then the substatement must be a compound statement. THE break
statement can be used to exit the 1loop from within the statement. The
continue statement can be used to continue directly on to evaluate the
expression, skipping. the rest of the substatement, from anywhere within the
statement.

while (driving) watch(the_road);

while (jogging)

{ take(a_step);
breathe();

) if (too_tired) break;

DO STATEMENT

e
- R S OB R G B A3 D S

do statement while (expression) ;

“Do* differs in only one way from the while statement - the expression
is evaluated after the statement is executed. Therefore the substatement will
always be executed at 1least once. The substatement will be repeatedly
executed until the expression evaluates to false (non-zero).

do anything();
while (there_is_still_time) ;

/* shuffle routine */
do

{ cut_the_cards();
shuffle();

'}
while (! ready_to_deal) ;

STATEMENTS
? .27

LANGUAGE DEFINITION

FOR STATEMENT

for (expr_l ; expr_2 ; expr_3) statement

The for statement 1is a looping statement which provides a convenient
place for .initializing, testing, and incrementing loop control variables. The
format shown above can be rewritten using the while statement:

expr_1 ;

while (expr_2)

{ statement
expr_3 ;

~y

Expr_1 1is evaluated once before the loop 1is entered. The test
expression, expr_2, is evaluated before each execution of the substatement.
If it results in a false (zero) value, the loop 1is not executed and execution
continues to the next statement. Expr_3 1is evaluated after each time the
substatement is executed.

<

Both expr_l and expr_3 can be wore Lhan one expression, separated by
in 1

commas. Expr_2 can only be one expression and should result
value.

Due to limitations of the LC implementation, all three expressions in
parentheses must be on the same line.

for (¢ = 'A' ; c <z 'Z' 2 +¥+¢)
putchar(c); /* print the letter */
/* ®Now I've said my ABC's ...* ¥/

BREAK STATEMENT

break ;

Break is used to exit any “while", *do*, or *for* loop and to exit the
body of a “switch® statement. Whenever & break statement 1is encountered,
execution 1immediately goes to the next statement past the loop or switch
statement. Break is illegal outside of any 1loop or switch compound

substatement. For an example of the use of break “in a switch statement, see
the section on switch-case above.

strscan(c,s)
char c,¥*s;
{ /* find character ¢ in string s */
while (*s l= c)
{ if (*s == §) break ; /* end of string */
++s ; /* next character */
}

return s ;

. STATEMERTS
2 - 28

-y

LANGUAGE DEFINITION

CONTINUE STATEMEN

continue ;

The continue statement is used to skip the remaining statements in a
compound loop substatement. In a "while" or "do" statement, execution
continues at the test expression. In a “for" statement, execution continues
at the reinitializing expression (the third expression). The continue
statement is illegal outside of any loop statement.

/* convert to lower case */

while ((c = getchar()) != eof)

{ if (¢ <'A* || ¢> '2Z") /* not an uppercase character */;
continue ; /* doesn't apply */
¢ = tolower(c) ;
putchar(c) ;

} :

RETURN STATEMENT

return ;
return expression ;

The return statement causes the currently executing function to end. If
an expression is provided, then the result of the expression is returned as
the value of the function. The returned value is undefined if no expression
is provided—-in the return statement. The return statement is not required to
return from a function. When no statements are 1left (the bottom of the
function body is reached), the function automatically returns as if a return
statement with no expression were encountered. Return statements are needed
when a value must be returned or when the return must take place before the
end of the function.

square (num)
/* square a number */

{ return num * num ; }
getline(buf)
char buf[] ; /* line input buffer */
{
/* check for a valid file pointer */
if (file pointer == NULL)
{ buf[P] = '\@' ; /* put a null string in buf */
return ; /* back to caller */
}
) fgets(buf, bufsize, file_pointer);

STRTEMEMTS
2 - 29

LANGUAGE DEFINITION

GOTO STATEMENT

goto label;

The goto statement causes an unconditional branch to the statement
identified by label. The labeled statement must be contained 'in the current
function. It 1is 1illegal to attempt a goto to a statement in some other
function. An attempt to do so will .result in an error during the assembly
phase. The following example 1illustrates the use of goto (note: it is
strongly recommended that you avoid the use of the goto statement):

rest(time) |

int time; P

if (time > 2300) goto sleep;
else return;
sleep: for (; ;)
}
LABELED STATEMENT

DD P W R XD D T D D D D D WD D D

?

label: statement;

Any statement can be prefixed with a label. This construction is usually
used to target the argument of a “goto® statement. The format of a label is a
valid identifier followed by a colon. The following are labeled statements:

calculate: i += 1§;

bigblock: i s jask=slam=np=9ga=psf;

. STATEMENTS
2 - 39

OPERATOR 6GUIDE

LC OPERATION

LC takes C source code as input and generates an EDAS Version IV
compatible assembler source file as output. Thus the output of the
compilation process must be assembled and linked with any required run-time
library module before it can be executed. The assembly and linking process is
performed using the EDAS IV assembler. A Job Control Language (JCL) file,
“LC/JCL*, is provided to present the compilation and subsequent assembly as a
Job stream to the operating system. The JCL procedure requires minimal entry
?f commands by the programmer to create an executable CMD file. The JCL file

s:

. Batch creation of a runnable ELSIE program. ’7

. Format is: do lc (file=<progname>,{show})
//1f show

lc #file# +1 .
//else

1c #file#

//end

edas (jcl,abort)
11¢
c/cprogram/#file#
//if show

a#filef -we
//else

a#file# -nl

é/end

. completed compilation

If you want to compile a program called “"myprog" and generate the finished
CMD file with only one statement, then the command:

DO LC (FILE=MYPROG) /* See ATTENTION on page 3-11 */

lets you sit back and relax while the machine does all of the work. If the
/ASM and /CMD files do not already exist you may want to enter a drive
specification as follows:

DO LC (FILE=MYPROG:1)
which looks for input and places output on drive one (1).

The first stage of the LC language process is, of course, to create an
LC source file. The editor that 1is a part of EDAS IV is provided for this
purpose. In order to use EDAS for the creation and maintenance of LC source
files, execute EDAS with the command:

- EDAS (LC)

The EDAS manual should be consulted for all operations concerning the editor
or assembler functions.

kﬁ,ﬂﬁﬁﬁﬁﬁiﬂw
3 -

IS

OPERATOR GUIDE’

The second stage of the LC process 1is the compilation of the LC source
using the LC/CMD compiler. Use the JCL procedure shown above. However, if you
want to take direct control of the operation, you can execute LC directly. LC
is executed when a command line beginning with LC is typed at the “D0S ready"
prompt or encountered in a JCL file. The format of the command line is
free-form - simply a list of input file specifications and option switches.
The command syntax is as follows:

BRRBRRDAETRBETERBEEIRBAZCEVCERBIZCB RV EBRAVERNIBLAIBLEEARTEITTIBRERI BN

LC filespec {filespec...} {switch} {switch...}

filespec - A file specification for the input file(s).
A maximum of 8 filespecs may be passed.

switch - Represents an optional compiler switch(es)
These switches are preceded with either a

|
|
|
|
|
|
}
plus sign (+ = on) or a minus sign (- = off).l
=

The compiler is executed by entering a command line such as:
LC CPROGRAM:2 +LIST ™

which compiles the LC source file, "CPROGRAM/CCC", and generates the output
file, ®CPROGRAM/ASM®, on drive 2. The “+LIST® switch specifies that you want
the LC source code listed to the screen during the compilation process.

The switches allow the user to control certain features of the compiler.
Switches and filenames may be intermixed in any order on the command line.
The simplest compilation command would simply be “LC PROGNAME® which compiles
the file, “PROGNAME/CCC", and generates the output file, “PROGNAME/ASM*.

FILE SPECIFICATIONS

There may be up to eight input file specifications given on the command
line. They are processed by the compiler in the order they occur (left to
right). If no extension is given for a source file, the default extension
“/CCC* is assumed. It is recommended that you establish your LC source files
with this file extension for uniformity and standardization. If you use "EDAS

(LC)" for your LC source code maintenance, the use of the /CCC extension is
automatic. ' . '

- The output file specification defaults to the same name as the first
input file specified. LC will append the file extension “/ASM* to this name.
The drive specifier, if any, of the first input filespec is used as the drive
specifier of the output file. The drive specifier should be given if the
output file must be written to the same drive as the input file. The LC
OUTPUT option may be used to specify a different file name or change the

destination drive number. Assembler source code output may be suppres
. sed by
turning off the OQUTPUT option. This can be helpful for quickly checking

-
»

RS OPERATION
7.9

(s

A

OPERATOR GUIDE

syntax without generating an output file.

COMPILER SWITCH OPTIONS

Compiler option switches are turned on or off by a '+' or '=!',
respectively, followed by the name of the switch. For example, "+1ist“ causes
the LC source code to be presented to the standard output device during the
compilation. The compiler regards any command line argument not beginning
with a plus or minus as an input file specification. Only the first letter of
the switch is examined, so partial spelling (or misspelling) is accepted.
Certain switches have operands which are specified by following the option
name with '=' and the operand. For instance, “+output=myfile:3* will cause
the output by the compiler to be written to "MYFILE/ASM* on drive 3;instead
of the filename that would have been the default.

COMMENT

This switch controls whether the original LC source code will be written
to the assembler output file as comments. The normal default is ON. The
C-source appearing as comments may be instrumental in your understanding the
compiler output as it generates a minimally commented assembly source
program,

GLOBAL controls the definition of external variables. If the switch is
turned off, " variables declared external are not defined in the assembler
output. If turned on, external variables are defined in the assembly module
output. This switch defaults to on. For more information on using the GLOBAL
option, see the ADVANCED TOPICS chapter.

LIST

The standard output would normally receive minimal feedback during the
compilation process. If the LIST option is turned off, LC will write each
function name followed by a period representing each statement in the
function. An example of this is:

maiN() (--ooooooooc-o}o
mve() {nooo.oooo-}o
m'lﬂ() {oooo}.

max() {c.esl.

P() {eeeeesecenossooncncncosansle

No errors found

If you want to see the source code as LC is compiling, you must specify the
“+1* option, since the default is "-LIST", Note that since listing output is
to “standard output*, it is subject to I/0 redirection. Thus, if you want a
printer listing, for whatever reason, you could specify "“>*PR" in the LC
command line.

‘ LC QPERATION
3 -3

OPERATOR GUIDE
OUTPUT=SPEC

This switch controls the output of the compiler to the output file. If
the switch is off, no output file is generated. However, if it is on, but no
SPEC is given, LC appends “/ASM* to the name of the first input file in order
to create the output file specification. When a file specification is given
for SPEC, 1t becomes the name given to the output file. A default extension
of “/ASM* is inserted if no extension is given. If only a drive specification
(®:D0*) is given, the output file 1is written to that drive, with the same file
name as the first input file. This switch defaults to on with no SPEC.

..... .
When this switch is on the compiler will stop when any errors are found
and displayed. Any key except BREAK will continue compilation. BREAK will
abort the execution of the compiler at any time if this switch 1is on. If LC

was invoked from JCL, the JCL will also be aborted. This switch defaults to
on.

»* LC OPERATION
3 -4

OPERATOR GUIDE

CREATING A CMD FILE

Once the LC compiler has compiled your program into assembly language,
you need to use the EDAS assembler to create the CMD file. In order to
provide the proper initialization in the CMD file and ensure that all
necessary runtime routines are linked with your program, a special assembler
file, LC/ASM, has been provided. A listing of the file follows to aid in
il1lustrating its functions:

;LC/ASM - §9/09/82
e RmR gk
This module is assembled to create the ~y
run-time /CMD program file. The line:

. *GET CPROGRAM
fetches the file containing your “main®
program compiled by LC. Separately
compiled C-source modules can be fetched
by adding additional *GET statements.
If you have created a user library(ies),
add additional *SEARCH statements.

COM ‘<LC is copyrighted (c) 1982 by Jim Frimnmel>

We We Ws we W WS G WO WO W @

. ;*3*3*
OrRG 5200H
@START: LD HL, (4049H) :P/u Model 1 HIGHS
" CALL @MoD13 ;Test for Model I/III
JR NZ, $+5 ;Go if Model I
- LD HL, (4411H) ; else use III's
LD SP,HL ;Set stack area
CALL @G0 ;Initialize
CALL MAIN ;Execute user prog
LD HL,0 ;Set return code
PUSH HL
CALL EXIT ;Back to DOS
$SSTEMP DEFL) ;Init relative storage
#*GET LCMACS ;Get macros used by LC
*GET CPROGRAM ;Fetch user program
IF @_INLIB ;True if #option inlib
*SEARCH IN/LIB ;Installation 1ib?
ENDIF
IF @ FPLIB ;True if #option fplib

@ FPLIB DEFL @_FPLIB.OR.FPINIT ;Force GET of fpinit()
. *SEARCH FP/LIB

ENDIF
*SEARCH LC/LIB ‘ ;Standard 1ib always!
$SSTORG EQU $. ;Set to lst storage byte
$PROGEND DEFL $$STORG+$SSTEMP ;Establish program end
END @START

The LC/ASM file provides a front end that makes your program usable on either
a Model 1 or Model III. This is the file that is assembled. Notice that the
bulk of the resulting CMD program is assembled from files via the *GET
statement and *SEARCH statements. If you have not yet read chapter five of

-
*

LC OPERATION

OPERATOR 6UIDE

the EDAS manual, you may want to temporarily turn to the sections on *GET and Lo
*SEARCH located within the fifth chapter.

-

If your compiled program file was named MYPROG/ASM, it is linked into
LC/ASM by changing the statement “*GET CPROGRAM" to "*GET MYPROG". This is
done simply with the EDAS editor or is automatic when using the LC/JCL Job
Control Language “hands-off" procedure.

For a great deal of your programs, the only LC runtime routines needed
will be located in the LC/LIB library. Since all LC programs need some of the
routines in LC/LIB, that library 1is ALWAYS searched during the assembly
process. The floating point library, FP/LIB, will be automatically searched
if your program requested the floating point library search via an “#option
fg]ib“ compiler macro. This is explained in more detail in the LC LIBRARIES
chapter.

Many useful routines are stored 1in the installation 1library, IN/LIB.
This library is not normally searched in order to save you assembly time when
you need not refer to the IN/LIB routines. However, it is very easy to force
an automatic search of the installation 1library. A1l you need to do is
specify an "#option inlib® comniler macro in your LC source program (similar
to "#option fplib®). For example,

¢#include stdio/csh
#ogtzgn inlib /* This statement invokes *SEARCH IN/LIB */
main :
int dot; N
{ for (dot=i, dot < 128, dot++) g

set(dot, @);
) exit(fh);

will schedule the compilation and assembly of your program with a forced

search of the installation library (to resolve linkage to the “set()"
function.

.‘M
\tat

‘ LC CPERATION
3 -6

OPERATOR GUIDE

COMPILER DIRECTIVES

VBRI BRI RZTZTIN

The LC compiler supports a handful of directives that control various
aspects of the compiler during the compilation process. One of these
directives, “#include filespec”, you will quickly become familiar with.
Others may be used less frequently. They, nevertheless, provide additional
power in the use of the LC language “system". These directives are:

#include

#include <filespec> P

This directive tells LC to insert the file designated by "filespec® into
the source stream being compiled. The <filespec> will default to an extension
of /CCC if no extension is given. The #include is used quite frequently to
merge the STDIO/CSH standard header file into your compilation. An
illustration of its use is:

/* sample program to illustrate #include */
#include stdio/csh
main()
{
int x; ‘
X==3+4*5.6; printf("%d\n",x)

#define

f#define <macname> <def1h1tion>

The “define* directive 1is a macro definition. It creates a macro, called
“macname*, which is defined to be the string of characters following the
macname (the definition). The compiler will substitute the string wherever
“macname® is found in the LC source stream. It is strongly recommended that
macro “macnames® be defined 1in upper-case characters so that it becomes
distinct when looking at your source code.

<macname> must be a valid LC identifier, whereas the <definition> is
anything and everything up to a comment or the end of the line. The
<definition> is substituted whenever the <macname> is encountered in the LC
source code input past the #define of <macname>.

An example of the use of #define follows:

#include stdio/csh
#define PRINTX printf(“%d\n",x)
main()
{ int x;
X =<3+ 4 *5 < 6; PRINTX;
x =3 +4%5 - 6; PRINTX;

-
»

LC OPERATION

OPERATOR GUIDE

#option

C X Y 1 T

foption <optname> {value} a
The #option directive is used to pass symbol definitions from the LC

source code- to the assembly phase. The <optname> must be a .valid LC

identifier. Value must be a numeric or character constant. Escape sequences
may be used in the constant. The compiler translates the #option directive to
the form:

@ NAME DEFL value

The “value" is optional (as shown above by apearing within braces). If the,
value 1is omitted, the DEFL statement will default to a value of negative one
(-1). This indicates TRUE to the EDAS assembler.

The #option directive 1is wused in LC to invoke a search of the
installation library, IN/LIB, or the floating point library, FP/LIB. If your
application will be using functions in either library, you will need to add
the statement(s): L

#option FPLIB
#option INLIB

for the floating point and installation libraries respectively.

LC has reserved additional option names for use with -the #option
directive. These are:

ARES - specifies that your program {will}/{will NOT}
be using command line arguments (argc, argv).
LC will suppress the run-time code normally
used to process arguments thus reducing the
size of your CMD program.

FIXBUFS - specifies pre allocation of buffer space for
standard 1/0. .

KBECHO - specifies echoing of keyboard input
to the video display when inputting
from a file opened with filespec, "*KI*®.

MAXFILES - specifies the maximum number of concurrently
opened files permitted.

REDIRECT - specifies that your program {will}/{will NOT}
be using standard I/0 redirection (>, <, #).
LC will suppress the run-time code normally
used to process 1/0 redirection thus reducing
the size of your CMD program.

For additional information on the use of these options and “#option® in
general, read the section.on options in the ADVANCED TOPICS chapter.

- LC QPERATION
3-8

\‘\

OPERATOR 6GUIDE

#asm - #endasm

S S D W D W W WD " W

#asm
transparent assembly language code
#endasm

The directive pair, #asm - #endasm, can be used to insert assembly
language source code directly within the LC source file. It should be wused
ONLY when it is ABSOLUTELY necessary to write a routine in assembly language.
Remember, any LC source code file that has imbedded assembly language code is
generally NOT portable. The more assembly language code you imbed, the less
portable your programs become and the more you have to recode when
transporting your program to another machine. : .

A1l input past the #asm statement is passed unchanged into the output
file. Of course, since the output file is an assembly language source file,
the statements following the “#asm* should be assembly source statements. The
block of assembly statements 1is ended with the #endasm statement. Please
note: the “#endasm® statement must be the first thing on a line, other than
tabs and spaces. Otherwise the “#endasm" will not be recognized and the C
:qgrce code following the “#endasm” will be passed uncompiled to the output

ile.

This escape to assembly language 1s provided as a convenient kludge
mechanism only. It is not intended to be the normal way of interfacing
assembly language functions to a C program. The proper way to interface to
assembly language is to place the assembly function in a separate module,
perhaps even in a user library if it is to be used frequently. This makes the
program easier to transport to other systems, as the machine-dependent code
is separated from the program source. See the Advanced Topics chapter for
more information on assembly language programming in the Elsie environment.

LE DPERATION

OPERATOR BUIDE"

A SIMPLE EXERCISE

VERBIRNDEDBELBITROD

It may prove helpful to you to see a program generated from start to
finish. It will be a small one, but nevertheless, one that will exercise all
of the steps needed to accomplish the creation of a CMD file. If you have
ever entered and/or edited a BASIC program, you are ready to perform this
exercise. Before we begin, remember that you will need the LDOS keyboard
driver activated. A few of the extra keyboard characters will be needed. It's
probably a good idea to refresh your memory as to the key combinations.

character key combination

CLEAR=COMMA

P

CLEAR-PERIOD
CLEAR~SEMICOLON
CLEAR-ENTER
CLEAR=SHIFT-COMMA
CLEAR=SHIFT-SLASH
CLEAR-SHIFT-PERIOD

CLEAR=SHIFT-SENICOLON

L

You must have the book, “The C Programming Language® by Kernighan and
Ritchie. Open it to page 15 and note the program " shown at the top of the
page. You are going to enter it. First, execute EDAS with:

EDAS (LC) i

The “LC" parameter tells EDAS to accept lower case Input, set tab characters
at every four positions, and use /CCC as the default file extension. You will
observe the EDAS heading message. Now enter the command, "“i*. EDAS will go
into insert mode and display the first line number. As you enter each line,
terminate it with <ENTER>. You should get into the habit of using the <TAB>
key (right-arrow) to organize your LC code intc neat indentations. It will be

shown below as *<T>%, Follow the line numbers shown below with the text as
found in K & R. “

EDAS YOU TYPE

90168 #include stdio/csh <ENTER>
90116 main() /* copy input to cutput */ <ENTER>
98128 { <ENTER> ; ‘

93136 <T> int c; <ENTER>
g@l4ag <T> while ((¢ = getchar()) != EOF) <ENTER>
@@158 <T><T> putchar(c); <ENTER>

$01680) <ENTER> ' ‘

90179 <BREAK>

> w clone:d <ENTER> /* “:d® specifies the drivespec */
Nsw.file!

b

. LC OPERATION
3 - 1F

CLEAR~SLASH ' "

TN

b7

4

L

~

OPERATOR GUIDE

You have Jjust entered an LC program, saved it under the name “CLONE/CCC:d",
and returned to DOS Ready. Now enter the command (with ":d" representing your
drivespec):

DO LC (FILE=CLONE:d)

If you have entered the program correctly, LC should compile your program and
invoke 1its assembly to create the CLONE/CMD file. Try out your program
according to K & R.

If you want to start understanding the concepts of I/0 redirection, turn
to page 1-7 of the INTRODUCTION. The program you have Jjust compiled into an
executable CMD command 1is used to illustrate [/0 redirection. Try ¢ut the
examples shown.

PX2D50020250020025 0 2K LKL

22500 KKK
225> ATTENTION <LK
22500 <<KLKLK

PID2O22000000005 255K <LLLLLLLLKLLLLLLLLLK

If you are invoking LC with the DO LC (FILE=MYPROG) command and the
EDAS assembly aborts with a Job Control Language, “Job aborted" message, you
most 1likely mistyped one or more identifiers (variable names, function names,
etc). zou can easily discover the error by reinveking the procedure with the

DO LC (FILE=MYPROG,SHOW)

LE OPERATION

~3

v

e

A

LC LIBRARIES

STANDARD LIBRARY

BTV ERRBTRAITIIIZTS

The standard l1ibrary, LC/LIB, 1is a collection of useful functions that
allows the user to interface with the world external to the program, without
having to know the specifics of the particular environment that the program
is running in. Thus, a program can be transported in source form to a
different computer under a different operating system. Only the standard
library need change between systems.

The library is defined in a device independent way so that a program can
use any device for input or output. Since any file is defined as a sequence
of bytes, all devices can be interfaced to as files. LDOS already ﬂgrovides
this type of device independence, thus the implementation of LC 'I/0 s
totally compatible with normal LDOS files.

The standard 1library also provides functions to perform machine
dependent operations, such as memory allocation and character set operations.

Every program in executable form under LDOS requires a small run-time
module in order to open standard 1/0 and provide 1/0 redirection, initialize
the 1/0 and memory allocation functions, and to provide basic operations that
LC programs require, such as MULTIPLY, OR, and AND.

The library is constructed as a Partitioned Data Set. LC functions are
stored 1in assembler source form as members of this data set. The standard
library 1is accessed by the EDAS assembler from the “*SEARCH LC/LIB" command.
Any member needed by your C language program is automatically linked with
your program during the assembly phase of the LC compiled output. See the
chapter titled, “OPERATOR'S GUIDE", for more information.

TRAEHET WIBRARY
4 - 1

LC LIBRARIES .

ALLOC()

- This function is used to allocate a memory block. Its syntax is:

ptr = alloc (nbytes);

|
| :
|
| nbytes - unsigned number of bytes needed. :
|
l ptr - address of the block allocated. }

BEEDSESHCECSINES SRV BARULBARNPEIBREILEZZANSVLLRRRELSEEERNTTLBRRITRR N

~

Alloc() 1s used to dynamically allocate memory during program execution.

The complementary function, free(), is used to release memory allocated

through alloc(). Alloc may be used to get table or buffer space when the

amount of memory space available is unknown, such as a program designed to
run in any size memory machine (16k, 32k, 48k). The programmer can call
alloc() with decreasing size of requested space until the space is allocated.

RETURN CODE

D X D A G I D KD *D

If a memory block has been allocated, the value returned is the address
of the memory block. If insufficient memory 1is available to satisfy the
allocation, alloc() will return a null (8).

"~ WARNINGS

The program must not access memory outside of the area allocated. File
access routines use alloc() and free() to establish and release File Control
Areas (FCA's). The programmer cannot assume that memory not allocated is free
for use, since later file opens may cause memory overlays. It is advised that

the programmer always use alloc() and free(), or sbrk() for all dynamic
memory accessing.

symtbsz -= symtbsz X symsiz;/* make integral */
if ((symtab = alloc(symtbsz)) == §)

abend(®"not enough memory“):
glbptr » startglb = symtab;

STANDARD LIBRARY
4 w2

X

LC LIBRARIES

DATA COMVERSIONS: ATOI() ITOA() XTOI() ITOX()

These functions are used to convert character strings of digits (decimal

:r]lhexadecimal) to their integer value and vice versa. The syntax is as
ollows:

S ——
int = atoi(decs);
itoa(int, decs);
int = xtoi(hexs);
itox(int, hexs);

int - 1{s an integer value.
decs - 1is a string containing decimal digits <@-9>
hexs - 1is a string containing hexadecimal digits

|
I
} <P-9>, <A-F>, or <a-f>.

These standard C functions are used to convert integer values to their
character string image and the converse. Functions are provided to deal with
character -strings containing either decimal or hexadecimal digits. Left
truncation of the integer value takes place if an excess number of digits is
present (i.e. int=xtoi(“1100¢") would result in the integer value of 4996
decimal). Conversion of a decimal string will be modulo 65536.

Note: the C itoi() function has not been implemented for abvious
reasons.

RETURN CODE

There is no return code.

| STAMBARD LIBRARY

LC LIBRARIES -

EXIT()

This function 1is used to exit your LC application and return to DOS. Its
syntax is:

8“.838"838388.838388888‘:.883‘333‘8‘388ﬂﬂ"'ﬂ:l'ﬁ':‘zl":t'a.‘

|
} exit(code); =
} code - 1{nteger return code. :
E - =

‘Bllllﬂ33388383.3883.88838888&‘88838*’88838.".‘38.'83888..8.3-

Exit() allows the user to exit cleanly from a program and control the;

consequences of exiting. Passing a zero (@) for the return <code> to exit()
indicates normal program termination, causing exit() to take the LDOS normal
exit. If a non-zero <code> is passed, exit() will take the error entry into
LDOS, thus aborting any JCL processing in effect.

If the terminating program was invoked by the cmd() function, the value
passed to exit() will be the value returned from cmd(). An exception is if a
negative value value is passed to exit(), in which case a negative one (-1)
is returned to cmd().

Exit() closes all open files before returning to LDOS. -
RETURN CODE

Gl ST B DS T D D LD R R

Exit() does not return to the caller. .
WARNINGS

For compatibility with other C 1anguage systems, the programmer should

22% dipend on exit() to close the program's files (other than standard 1/0
es).

STANDARD LIBRARY
4 - &

LC LIBRARIES

FCLOSE()

This function is used to close an open file. Its syntax is:

|
retcod = fclose (fp); :
|
|

~3
Fclose() is used to close an open file and to free the file control area
(FCA) for later use. The <fp> passed to fclose must have been obtained from
fopen(). In LC, exit() also closes files; however, the programmer should use
fclose() to ensure compatiblity and portability.

|
|
} fp - the file pointer.

There is a limited number of files (determined by the MAXFILES compiler . __

option), including standard files, that may be open at one time. Fclose() is
used to free FCAs so an unlimited number of files may be accessed one after
the other.

RETURN CODE

The “retcod® will be non-zero if no error was detected in the closing
operation. If an error was detected, then “retcod” will be zero (8).

WARNINGS

The value passed to fclose() must be a valid file pointer. If it is not,
unpr?dictible things, such as destroyed disk files, reboots, etc., can
result. ,

if (lastc != @xla) putout(Pxla);
fclose(fpl); fclose(fp2);
printf(“Files now closed");
exit(@);

STAHDARD LIBRARY

LC LIBRARIES

FGETS()

This function is used to get a buffered line from a file. Its syntax is:

eofind = fgets(buf, max, fp);

I I

| |

| buf - address of the buffer area. =

|

% max - the maximum length of the input string. %

| fp - the file pointer. |

| : | ~y
REVBVIZB LBV SESEAREIRCRERRACBERREIDSSAETBABRRENE IS EEERNERLERTRE

Fgets() is used to obtain a buffered line from a file. A file may be the
console keyboard, the RS-232 interface, or any input device or disk file. Up
to (max) bytes will be placed in the buffer. Input is terminated when either
an end of line (@DH) or end of file is encountered or maximum buffer size is

ached.

re

For compatibility with LDOS JCL files, keyboard 1line input is performed

using the @KEYIN system call. Fgets() recognizes the BREAK key as the end of
file from the keyboard.

RETURN CODE

DU G D T O QB W

The end-of-file 1indication, “eofind®, is the return code. “eofind® is
NULL (zero) if an end of file is encountered; otherwise, "eofind® is <buf>.

. STAHD@RD %IBRARY

's

»

LC LIBRARIES

FOPEN()

This function is used to open a file/device. Its syntax is:

AR RS S S ST RS AR T RS TTCIT TSN LSDIXTITISRRSTI TSNS IIRTIIBTITES

fp = fopen(fspec, mode);

|
| |
: fspec - is the address of the file specification. }
| mode - the address of the access mode identifier: |
| “r#* or “R" = read; “w" or “WY = write; |~v
g ®a" or “A" = append. { “

Fopen() allows the programmer to initiate access to a file. Except for
standard input, output and error files which are automatically opened, all
files must be opened using fopen(). “fspec" points to a file specification
string. "mode" points to a string defining the mode of access. Allowable
modes are read, write or append. Only the first character of “mode* is
checked, and that character may be upper or lower case.

The file pointer is used whenever access to the opened file is needed.
If zero is returned, an error occurred during the open process.

RETURN CODE

The file pointer, “fp*, 1is returned if no errors are detected in the
open operation. “fp* will be set to NULL (zero) if an error is detected
during the open operation. ’

WARNINGS

Opening the same file for both input and output with two or more calls
to fopen() should NOT be done. If the file is accessed in this manner, it
will create unpredictable results, possibls causing loss of file integrity.

D D s Om D T .

getfile(fname)
char *fname;
{ FILE *fp;
if ((fp=fopen(fname,"“r*)) == NULL)
{ printf(“Open error - %-2@s\n",fname);
exit();

else return fp;

STA%D&RD LIBRARY

LC LIBRARIES

FPRINTF()

BsEasssaEn

This function is used to create a formatted image for output to a
device/file. Its syntax is:

retcod = fprintf(fp, control, argl, arg2, ... J);
fp - s a file pointer.

3

|
| i
| |
| |
{ control - 1s a string as specified under PRINTF(). %
{ argn - are arguments as specified under PRINTF(). {

BRBBEDLBEBRVET VRNV VAT LCBEEIDEBBLAISRTBDIS BT RBRBIRBLERBTBRBBE

RETURN CODE

The “retcod” will be zero 1f no error was detected in the output
operation. If an error was detected, then “retcod" will be EOF (-1).

-" STAHDARD %IBRARY

-

\

A

LC LIBRARIES

FPUTS()

This function will output a string to a file/device. Its syntax is:

retcod = fputs(string, fp);

|
|
} string - {s the address of the string to be output.

~3
Fputs() outputs to the file defined by “fp*, all characters pointed to
by “string®, up to the first zero byte.

RETURN CODE

The *“retcod®” will be zero if no error was detected in the output
opfgation. If an error was detected, then “retcod” will be equal to “EOF"
(-1).

WARNINGS

D O D WD VI P L A

~Calling fputs() with an invalid file pointer can result in destruction
of files or other havoc.

—

STAMUARD LIRRARY

LC LIBRARIES

FREE()

This function frees memory allocated with alloc(). Its syntax is:

free(ptr);

|
: |
} pte - address of the bottom of the memory block. }
B -

BRAGSBERGRBREEERBRABIBEESEREEAEERSBISEINIBIBREABNEEBRISESBERBBAS

Free() 1s called when a memory block allocated to the program by the
function alloc() 1s no longer needed, and the programmer wishes to free thé’
memory space for later use. "ptr* points to the first (lowest) byte allocated
to the program by alloc(). ‘ ’

RETURN CODE

There is no return code.

WARNINGS

G D G LD D AP WD

——

Calling free() with an address other than that obtained from a call to

alloc() will cause unpredictable results, probably a program crash when the
next alloc() occurs.

.* STANDARD LIBRARY
4 -

LC LIBRARIES

GETC()

This function is used to fetch (input) a character from a file/device.
Its syntax is:

¢ = getc(fp);

I
| |
| fp - 1{s the file pointer. |
! l

BUBBARBABEBBE LR BN IRIINI R TE N TS 20 050 WS X5 0T T 0000002000200 2RI NN 1’7

Getc() is used to input a single byte from a file. “fp* must be obtained
from fopen() or be a standard file pointer. Any of the 256 possible binary
codes may be input using getc(). An end of file code, “EOF" (-1), is returned
if end of file is encountered.

RETURN CODE

The return code is the integer value of the character input from the
file. If an end of file is encountered, then “EOF* (-1) is returned.

WARNINGS

The “fp™ must be a valid file pointer or devastation may result. You are
warned!

If *c* is to be stored before testing for end of file it must be stored

in an integer variable. If not, the end of file value will be truncated and
will remain undetected.

filecopy(fp) /* copy a file to the standard output */
FILE *fp;
{
int c;
while ((c = getc(fp)) != EOF)
if (¢ != putc(c,stdout))
abort(“Output file write error®);

STAKDARD LIBRARY

LC LIBRARIES,

GETCHAR()

This function is used to get a character from standard input. Its syntax
is:

AR R AR NN SRS RSAIRARBL I BASBREREZXRIRBARIZIRG

| |
% ¢ = getchar(); =
i - there are no parameters. ' %
=™ =

Getchar() inputs a single byte from the standard input. Getc() is usged
to perform the input.

RETURN CODE

...... LI T Y

The return code is the integer value of the character input from the
file. If an end of file is encountered, then ®EOF* (-1) is returned.

WARNINGS

D O G "D TP

If <> 1is to be stored before testing for end of file, it $hst be stored
in an integer variable, or the EOF value will be truncated to 255.

bytes = lines = @§;
while((c=getchar()) !s= eof)
{ putchar(c);

++bytes;

if (¢ == eol) ++lines;

. STANDARD LIBRARY
: 4 - 12

~

RN

LC LIBRARIES

GETS()

This function fetches (inputs) a buffered line from standard input. Its
syntax is:

eofind = gets(buffer);

|
| |
| buffer - is a pointer to an 81 byte buffer. |
I ' I

aas:xaa:a8:aanaaassaaaasa:8:aaaaaaaasa:ua:aa:asa-aauas:aaaana:a:ﬁ
v

Gets() inputs a line up to 8@ characters 1long from the standard input
and places the line in memory starting at the address given by <buffer>.
Fgets() is used to perform the input.

RETURN CODE

The end-of-file indication, “eofind®, is the return code. “eofind" is
NULL (@) if an end of file is encountered; otherwise, “eofind* is <buffer>.

WARNINGS

The “buffer® must be at least 81 characters long.

—

STAHDARD LIBRARY

LC LIBRARIES.

MOVE()

This function will copy'a memory block in memory. Its syntax is:

move(pfrom, pto, len);
pfrom - the address of the block to be moved.

| [
| I
| |
| |
| : |
{ pto - the address of the block's new starting i
| |
| |
| |

address.
len - the length of the block, in bytes. 5
BRBBESEERER R EETB LTSRN ITABLCEISBENVETEIRARNITIZTETIIRIIRDN

This function will perform a nondestructive move of a memory block. That
means that if the "pto® address 1is less than the “pfrom* address, the move
will start from the beginning of the block. If the “pto® address is greater
than the “pfrom® address, the move will start from the end of the block.

RETURN CODE

There is no return code.

WARNINGS

There 1s no checking on the magnitude of ®len®; thus, a move() with an
erroneous value for *len® pould overyrite a critical portion of memory.

. STANDARD LIBRARY
. 4 - 14

~

LC LIBRARIES

~ ISALPHA() ISDIGIT() ISLOWER() ISUPPER()

These functions are used to test a character. Their syntax is:

R S R R S R R N S TS RSN SNSRI ESITARIIINTITIRNBTIRIIZR

retcod = isalpha(char);
retcod = isdigit(char);

3

" retcod = isupper(char);

| |
| |
| |
| |
} retcod = islower(char); w %
| o |
i char - 1is the character under test. {

“isalpha" 1is used to determine if a “character" is an upper-case or
lower-case alphabetic (<A-Z, a-2z>). "isdigit()" is used to determine if a
“character" is a digit in the range <@-9>. "islower()* 1is used to determine
if a “character" 1is an alphabetic in the range <a-z>. “isupper()" is used to
determine if a “character” is an alphabetic in the range <A-2>.

. RETURN CODE
Each function will return a TRUE (1) or FALSE (@) value based on the
results of the test. ‘

EXAMPLE

if (isdigit(char))
printf(“Character is <@-9>\n");
else if (islower(char))
printf(“Character is <a-z>\n");
else if (isupper(char))
printf(“Character is <A-Z>\n");
else
printf(“Character is none of the above\n");

STANDARD LIGRARY

'LC LIBRARIES.

PRINTF()

EREBIEIT

This function creates é formatted image for standard output. Its syntax
is:

R R R I S I N S R SRS SRS SIS SIS T TINITITR
. ' l
} printf(control, argl, arg2, ...); }
| comtrol - 1{s a string containing transparent printing |
| characters and conversion specifications. :
|
| argn - are arguments to be formatted for the output |
{ print image. : -
RS EES N IN S SEESASEBEITTRC IR IS I[N BIRIIIISTRTES

This function 1is used to create an output image to the standard output
device. The specifications for formatting the output are determined by the
character string, "control®. This string will contain ordinary characters
copied directly to the output image and/or specifications denoting the field
conversions of all arguments. The conversion specifications take the form of:

%{=}{xxx}{.yyy}char
As can be noted, the specification is a sequence of sub-fieldswa which the
percent sign (%) and the “char® are mandatory. The percent is an “escape"
character signaling the start of the field specification. The *char* denotes
the format of the output field image ({binary, decimal, string, etc.}. The
sub-field specifications are interpreted as follows:

y 4 = the mandatory specification initiator,

- = specifies that the value will be left-justified within
the print field image, '

xxx = specifies the minimum width of the print field image,
oYYy = specifies the maximum number of string bytes to print,

char = the conversion character {b=binary, o=octal, d=decimal,
x=hexadecimal, s=string, c=character, u=unsigned}.

Any portion of the control string which cannot be interpreted as a

conversion specification field 1is considered to be transparent printing
characters and will be passed directly to the print image.

printf(“%d characters, %d lines were copied\n®, bytes, lines);

. STANDARD LIBRARY
‘ 4 - 16

™

14

S

LC LIBRARIES

PUTC()

This function is used to output a character to a file. Its syntax is:

R ARSI T T ERRTRTEIARATATITSSIITITIITIITITITRITIRIRE

cret = putc(¢, fp);
c - 1is the character to be output.

| |
| I
I |
: |
} fp - s the file pointer for the output file. l
t

'8'I'\III-'.--"I.I.‘I'I.'ﬂ't.'..."'"..'-II'CII"'O'I"'I.I- f?

Putc() is used to output single characters to a file. ®c® is any of the
256 possible character codes. If an integer value 1is passed it s
left-truncated, so that only the least significant byte is output.

RETURN CODE

The return code, “cret®, 1is the character passed in “c" if no errors are
detected otherwise, it will be different from the character passed in “c*.

WARNINGS

“fp* must be a valid file pointer obtained from fopen() or one of the
standard 1/0 pointers (stdin, stdout, stderr) or destruction of files may
occur.

EXAMPLE

2 B O W v em G

if (putc(¢c, fp) I=¢)
return(l);
else return(®);

sxnuuﬁg%%gym@gﬁ

LC LIBRARIES-

PUTCHAR()

This function 1is wused to write a character to standard output. Its
syntax is:

B Rl R R R RS R E SRR ERN SNSRI RNAC LRI LR IZAITBERS

cret = putchar(¢);

| |
| |
| ¢ - is the character to be output. | l
| |
& t-3

Putchar() outputs the character “c" to the standard output file. Putck)
is used to perform the output operation.

RETURN COOE

The return code, ®cret® is the character passed in *c"*, if no errors are
detected.

WARNINGS

There are no warnings.

. STANDARD LIBRARY
‘ 4 -~ 18

v

LC LIBRARIES

PUTS()

This function is used to output a string to the standard output. Its
syntax is:

|
retcod = puts(string); %
|
I

e e R T P T T P P T P P T P R ‘R?

|
|
} string - 1s the address of the string to be output.

Puts() outputs <string> to the standard output file. All characters up

"to the first zero byte are output. If an ' error occurs during output, the

value “EOF" (-1) is returned; otherwise, a zero is returned.
RETURN CODE

-) W D OB O

The “retcod* will be zero if no error was detected in the I/0 operation.
If an error was detected, then “retcod™ will be set to “EOF" (-1).

WARNINGS

if (argc!=3)

{ puts(“Format error: compare filel file2\n");
exit();
}

STEHDARD LIBRARY

LC LIBRARIES"

SBRK()

This function is used to allocate a memory block. Its syntax is:

R RS RN ISR SN SECERTTIVEIRRNEITTALIIITTEIIBIITIZSE

| ‘ |
} ptr = sbrk(nbytes); {
= nbytes - an unsigned integer number of bytes needed. g

Sbrk() reserves memory for use by a program from the system memory pool.
The memory allocated by sbrk() cannot be deallocated until the program
finishes execution. Alloc() wuses sbrk() to request blocks of memory as
needed. If the memory requested will only be needed for part of the execution
of the program, it is recommended that alloc() be used.

RETURN CODE

B AT 63 U T €D G WD o

. The return code, "ptr", is the address of the allocated block of memory
if the sbrk() was successful. If not enough memory is available to satisfy
the request, “ptr® is set to NULL (8).

WARNINGS

o o vy o o o e

Only memory allocated by sbrk() or alloc() should be wused by the
programmer for dynamic space. File opens and closes, including standard
files, use these functions for setting up File Control Areas (FCA's). These
FCAs can be clobbered if the program accesses unauthorized memory.

]

STANDARD LIBRARY
4 - 28

)/

™
\

X

LC LIBRARIES

TOLOWER() TOUPPER()

These functions are used to convert a character from one case to the
apposite case. Their syntax is:

¢ = tolower(char);

¢ = toupper(char);

[- {s the converted result.

[} —————— e e ———

|
|
|
’
| char - 1is the character under test.
|
|
|

“tolower” is used to convert an upper-case character <'A' through 'Z'>
to a lower-case alphabetic <'a' through 'z'>). *“toupper“ performs the
opposite function; a lower case character is converted to upper case. Both
functions affect only alphabetic characters; numbers, special symbols, etc.,
are returned unaltered.

RETURN CODE

Each function will return the converted character, as required.

STANDARY: LIBRARY

G - 21

LC LIBRARIES .

INSTALLATION LIBRARY

TR EB VRS RARDTRIRSSS

The installation library is a collection of functions very specific to
the particular machine LC is running on. Also included are functions not
considered to be “"standard" C functions These functions group themselves into
STRING functions, PLOTTING functions, and CONTROL functions. All of the
functions are contained in the library, IN/LIB (note: STRCAT, STRCMP, STRCPY,
and STRLEN are documented under the string functions; however, since they are
standard C, they are physically located in the LC/LIB library).

If your Lé program is going to make use of any of the functions
contained in the IN/LIB 1library, you will have to insert the compiler
directive statement: P

#option IN/LIB

in your C source program.

INSTﬁLLATION LIBRARY
4 - 22

LC LIBRARIES

PRIMITIVE PLOTTING FUNCTIONS

The plotting functions support the block graphics mode available to the
CRT screen. The installation library plotting functians include functions to
control individual pixels (picture elements), as well as to create various
line constructions. The primitive functions are used to turn on, turn off, or
determine the status of any point (pixel) in the scres: image. The syntax of
these functions is:

retcod = pixel(funcod, X, ¥y);

l“'»;
retcod = point(x, y);
reset (x.ﬁy‘); ~

set(x, ¥);

set (1), or pointed (2).
X - specifies the horizontal coordinate.

|

|

I

|

|

|

|

|

|

|

|

|

|

Yy - specifies the vertical coordinate. {
t 3

|
|
|
|
|
I
|
= funcod - specifies whether the pixel is reset (@),
|
|
|
|
|

The *“point()“ function will return the status of the pixel at the
coordinate, Xx,y. A return code of one (1) indicates that the pixel is turned
on (light) while a zero (P) indicates ‘that 'the pixel is turned off (dark). If
the pixel contains something other than a graphic character, a negative two
(-2) 1is returned. A negative one (-1) indicates the point x,y 1is out of
range.

The "reset()" function will turn off the specified pixel while the
"set()* function turns on the pixel. Neither of these two functions provides
a return code unless x or y is out of range.

The “pixel()* function can be used to point, reset, or set the pixel
depending on the function code supplied as the argument. "pixel()* 1issues a
return code only when the function code passed 1is indicative of “point* (2)
or when an argument is invalid.

The plotting functions specified above refer to the arguments detailed
as follows: i :

This function code specifies the operation to be performed on the pixel.
It can be an integer value in the range <@-2>. If the argument passed is
outside of this range, the return code will be negative three (-3) indicating

[
-

INSTALLATION LIBRARY
4 - 23

LC LIBRARIES,

an invalid function code. These codes are used as follows:

@ - Indicates the “reset" function which will turn off (make dark)
the pixel.

1l - Indicates the "set" function which will turn on (make light) the
pixel.

2 - Indicates the *point" function which will return the status of
the specified pixel. The status will be zero (@) for reset, one (1)
for set, negative ome (-1) if xl,yl is not in the CRT image, or
negative two (-2) if the specified pixel does not contain a graphic
character.

Y

This integer value specifies the pixel position along the x-axis
(horizontal) or y-axis (vertical). The value is a virtual pixel, which means
that it does not have to be a position in the CRT image. However, where a
line 1is being constructed, only that part of the 1line actually in the CRT
image area will be plotted. The direction away from the origin is always
considered to be 1in the positive direction (for more information on this
subject, see the pmode() function).-

RETURN CODE -

TV 4D T D €D A NS T R R

Return codes are provided by the above functions where applicable. These
codes are indicative of the following:

@ - Indicates that the pixel is reset [point(x,y) or
pixel(2,x,y)1.

1 - Indicates that the pixel is set [point(x,y) or
pixel(2,x,y)].

-1 - Indicates that the point xl,yl is out of range (i.e.
virtual and does not appear in the CRT image).

=2 - Indicates that the pixel does not contain a graphic
character [point(x,y) or pixel(2,x,y)].

-3 = Indicates that the function.code passed to pixel()
is invalid (not in the range <@-2>).

EXAMPLE

T D PP D -

This routine p]otsha horizontal line:

for (x =@, y = 4@; x < 128; x++)
set(x, ¥y);

. INSTALLATION LIBRARY
. & - 24

-~

. 4

~

LC LIBRARIES

ADVANCED PLOTTING FUNCTIONS

These functions are used to plot geometric shapes ({lines, rectangles,
and circles}. Their syntax is as follows: , ,

|
retcod = box(funcod, xl1, yl, x2, y2);

retcod = circle(funcod, x1, yl, rl);
retcod = line(funcod, x1, yl, x2, ¥2);

|

funcod - an operation code to set (1) or reset (@) the
pixels- involved in the geometric plot.

xl,yl - the coordinate of the first point defining
the geometric shape.

|
|
=
x2,y2 - the coordinate of the second point defining |
the geometric shape. I

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
:
: rl - the radius of the circle in “y" units.

The *line()" function‘wiii plot a line connecting coordinate point xl,yl
with coordinate point x2,y2.

The “circle()" function will plot a circle at coordinate center point
xl,yl of vradius rl. The integer value, “rl*, specifies the radius of the
circle. Since block graphics are generally taller than their width, it is
necessary to specify the radius in units of either *x* or "y". Within these
plotting functions, "rl* is a value representing the radius in “y" units.

The "box()* function will plot a rectangle around the diagonal specified
by the coordinate point pairs, xl,yl and x2,y2. If the coordinates specified
either equal x (x1 = x2) or equal y (ylL = y2), then the rectangle will
diminish to a line. The rectangle will collapse to a point, if both xl1=x2 and
ylay2,

VIRTUAL POINTS

The concept of virtual points is an important one. What it means is that
your plotting routines do NOT have to limit themselves to the CRT image area.
For example, a circle(1,0,0,20); function describes a circle about the
origin. This means that a portion of the circle would be plotted off of the
CRT image. The plotting functions permit your arguments to describe such
“virtual" images; however, any portion of the geometric shape that would be
outside of the CRT image area is inhibited. Thus, in the above example, only
a portion of a circle (an arc) will be plotted.

IXSTALLATION LIBRARY
4 - 275

LE LIBRARIES

It is also important to note that if any virtual pixel is described in
your arguments, the function will return a negative one (-1) after completing
the entire geometric plot. Your program can make use of this return code if
it needs to detect this fact.:

RETURN CODES

Return ‘codes are provided by the above functions where applicable. These
codes are indicative of the following:

-1 = Indicates that the coordinate points xl,yl , x2,y2,

or a portion of any plot is out of range (i.e. virtual
and does not appear in the CRT image).

=3 = Will be returned if the function code passed is invalid ot
(not in the range <@-1>.

EXAMPLE

- . e 6b < o .

The following routine will plot increasing rectangles starting at the =~~~ |

center of the CRT image:

for (x1263,y1223,x2264,y2%24; x1 >= @; xl==,yle-,x2++, y2++)
box(1, x1, yl, x2, y2);

-——

Try out the next example program:

#option inlib
main()

int x1,x2,yl,y2,t,t1; ‘

for (xl=@, yl=@, x2=127, t = @ ; t <= 47 ; t++)
{ Vine(l,x1,yl,x2,t);
line(@,x1,yl,x2,t);

}
for (y2=47,t = 127 ; t > @ ; te=)
: { Tline(l,xl,yl,t,y2);
} line(@,x1,y1,t,y2);
exit(@);

INSTALLATION LIBRARY
. 4 - 26

r

LC LIBRARIES

PLOTTING CONTROL FUNCTIONS

Two functions are provided that interface with and control certain
aspects of the pixel plotting functions. The “pmode()" function establishes
the CRT image area as one of the four quadrants in the cartesian coordinate
system. Another function, “ploc()", establishes the starting address of the
CRT image area. The syntax of these functions is:

| |
ploc(address);

retcod = pmode(quadrant); ’ | 77
address - specifies the starting address of the

| plotting image area. Plotting functions use
the CRT address unless changed by pmode().

quadrant - sets the plotting image to quadrant <1-4> of
the x-y plane {initialized to quadrant 4}.
If quadrant = @, then the current quadrant |
number in effect will be returned. l

The pmode() function is quite useful when your application concerns the
graphing of mathematical functions in the standard cartesian coordinate
system. Since most functions are graphed in the first quadrant, a “pmode(1l)"
will establish the image area for that purpose. Please note that any
characters/graphics currently on the screen at the time the pmode() is given
are left undisturbed - pmode() does NOT refresh the current screen contents

to the revised quadrant but prepares the plotting functions for the new
quadrant.

"Quadrant" is used when changing the base origin of the plot image area
with the pmode() function. The image area is considered to represent anly one
quadrant of the x-y plane in the cartesian coordinate system. The quadrants
are numbered as follows:

with the point 9,0 (the origin) appearing at the corner identified with the
letter “0". The standard quadrant used by the plotting functions will be
quadrant 4 unless changed with a pmode() function call. Remember that the
direction away from the origin is always considered to be positive.

The ploc() function can be very powerful in creating dynamic displays.
By establishing an off-CRT buffer equal in length to the CRT image area, its

.
-

ERSTALLATION LIBRARY
4 - 27

LEC LIBRARTIE-S

address can be passed via ploc() so that the plotting functions plot into the -
buffer. The buffer could be subsequently moved to the CRT image area with the
move() function. ')

RETURN CODES

Return codes are provided by the pmode() function where applicable.
These codes are indicative of the following:

l-=4 - Indicates the current quadrant in effect when a
pmode(#); function is invoked.

=] < Returned if "quadrant® is not in the range <@-4>.

)/

. INSTALLATION LIBRARY
‘ 4 --28

~

LC LIBRARIES

STRING FUNCTIONS

SAITRTS VS LTTISIRT

The most important bit of information to convey at this point concerning
the use of strings and the C language, 1is that the language provides no
internal mechanics for dynamic string maintenance. Strings are generally
stored in character arrays - arrays are fixed in length at the time of their
declaration. Therefore, when you employ the string functions contained in
this installation library, remember that your application must provide the
proper array sizes to deal with the expected lengths of the strings. Where
string lengths are indeterminate at the time the application is coded but are
determined rather at run time, it may be prudent to consider testing the
length of a string operation result prior to actually performing the intended
operation to ensure that the operation will not exceed the array size of the
array receiving the string result.

Another point worth remembering is that there is no upper limit on the
length of a string in the C language. A string 1is stored contiguously in
memory. The last character of the string 1is denoted by a null byte (hex zero)
at the end. Thus, any array used to store a string should be defined with a
size one byte greater in length than the maximum length of the string it is
to contain. This will allow for the storage'of the terminating zero byte. For
instance, the string “Hello®, is stored as (shown in hex):

48 65 6C 6C 6F p@

The string functions provided in the installation 1library correlate with
the string functions provided in various implementations of Microsoft BASIC.
Again, remember that no dynamic string allocation/compression takes place in
these routines.

The string functions, strcat(), strcmp(), strcpy(), and strlen() are
documented in this section. However, since these functions are considered to
be/“standard C* functions, the routines are supplied in the standard library,
LC/LIB)

INSTAR ﬁﬁ"&ﬂ LIBRSRY

R 2

LC LIBRARIES

The functions provided take the following format:

AR RS N S S SRS NS IR CERSSSIIA XIS EITTIIIITII =R

[|
| strcat(dest, source);
I

| retcod = stremp(string_l, string 2);
strcpy(dest, source);

retcod = strepl(source, dest, pos, count);
| strept(dest, source, repeat);

~y

retcod = strfind(dest, source, pos);

stright(dest, socurce, count)s

strleft(dest, source, count);
retcod = strlen(source);

retcod = strmid(dest, source, pos, count);

count - 1{s the integer sub-string length. -
I dest - is a pointer to the destination string.
pos . = starting index position or array subscript.

source - is a pointer to the source string.

repeat - a repetition counter.

TRIVIJLLAASAIIDABRTI LD CHUTEVSSBIDCEIIRIDEITIIISEITRNITITSASRABS

i
=

A 0 4D &V W

The strcat() function will concatenate (append) the source string to
the destination string.

STRCMP ()

-
- S D G W D

The function, stremp(), will compare string_l to string_2. If the
string_l would appear above string_2 in an ascending sorted list, the return
code will be negative. (<@). If the two strings are equal, a zero () will be
returned. A return code of a positive value greater than zero (>@) indicates
string 1 to be below string 2 in an ordered 1list. If you are unfamiliar with
how ASCII strings are “ordered“, perhaps a strong example will clarify this
discussion. The following is an ordered list of strings in ascending order:

. INSTALLATION LIBRARY
. 4 - 3¢

P

tian]

LC LIBRARIES

a8bcde

abc

abed

Jim

karl

rich

roy
this_is_a_long_string

Keep this ordered 1ist in mind in the following examples. The statement:
| if (strcmp(®abc*,"a8bcd*) < @) ? printf(“above®) : printf("below");

should print the word, “below* since the string, “abc" is below the? string
*aBbcd® in an ascendingly sorted list. The statement:

if (strcmp(“abc®,"abcd®) < @) ? printf(*above®) : printf("below*);

should print the word, “above" since the string, “abc" is above the string
“abcd“ in an ascendingly sorted list.

STRCPY()

The strcpy() function copies an image of the source string to the
destination string buffer.

STREPL()

D R W - - —

The function, strepl(), replaces that portion of the destination string
starting at relative position "pos® and continuing for “count® characters
[the destination substring] with the source string. The arguments “pes" and
“count® control where and how much of the destination string is to be
replaced (i.e. what is the substring). The length of the replacement string
is the length of the source string. If "count* is zero (@), then an insert
operation is performed without deleting any characters of the destination
string. If the source string is null (i.e. of zero length), then only the
identified sub-string is deleted. If "dest+pos" exceeds the bounds of the
destination string, an out-of-range error will be returned and the string
operation will be aborted. Bear in mind that this function behaves
differently than the Microsoft BASIC MID$= function; however, the LC strepi()
function performs as a string replacement algorithm should perform.

STREPT()

The strept() function replicates the source string into the destination
string the number of times indicated by “count". Note that the replication
uses the entire source string and not Jjust the first character. Thus a
statement such as: :

strept(newstring,**.",10);

IRSTALLATION LIBRARY
£ .

LC LIBRARIES.

will create newstring equal to "# * * % % # % & % % 4,

STRFIND()

OB LD G W W - S O

The function, strfind(), will search the destination string for the
first appearance of the source string. The destination string will be
searched starting at the position “dest+pos*. If the source string is a null
string, the value of “"pos® will be returned. If the destination string is a
null string, a negative one (-1) will be returned. If the source string is
found in the destination string, its position relative to the beginning of
the source string will be returned. If the source string is not found (i.e.
is not a sub-string of the destination), a negative one (-1) will be
returned.

~3

- s 2 G AN O 5D D

The stright() function will copy the rightmost “count* characters of the
source string (the sub-string) to the destination string. This is NOT an
append operation. The destination string is replaced with the sub-string. If
“count* is zero, the destination becomes a null string. If the “count® is
greater than the source string length, the entire source string is copied.

STRLEFT()

- o o0 ew 2D o o v ==

The function, strleft(), will replace the destination string with the
leftmost “count®” characters of the source string. If count " is zero, the
destination becomes a null string. If the “count" is greater than the source
string length, the entire source string is copied.

STRLEN()

T G O O D

The strlen() function returns the length of the source string.
STRMID()

The function, strmid(), will replace the destination string with the
substring of “count® characters starting at position “source+pos® of the
source string. If “count® is zero, the destination string will be null. Also,
if "source+pos* exceeds the bounds of the source string, an out-of-range
error (-1) will be returned and no string replacement will occur. “Count* may
be greater than the length of “source* plus “pos“.

. INSTALLATION LIBRARY
‘ 4 - 32 -

LC LIBRARIES

STRING FUNCTION ARGUMENTS

The string functions specified above reference various arguments

detailed as follows:
DEST

This represents a pointer to a character array. The argument that is
passed to a function is an address when the argument references an array;
therefore, a pointer 1is identified to the string functions by the very nature
of the character array declaration as in:

char s[81]

~y

which establishes a character array capable of holding up to an 8@-character
string. '

SOURCE

This also represents a pointer to a string which is used as the “source®
string where the function requires more than one string in its arguments.

POS

This represents a starting position relative to the beginning of a

string. It is essentially used as an index or subscript into the character
array (@ <= P0S < n).

- e o

This parameter is used, where required, to indicate the length of some

substring. In the case of strept(), it is used to specify the replication
quantity. v

RETURN CODES

The return code of strcmp() is <@, 8, or >@ as noted above. The return
code of strlen() is the length of the target string. The functions strmid()
and strepl() will return a negative one (-1) if the arguments specify a
resulting position cutside the range of the string. For instance:

if (strmid(s,"error“,6,3) == -1) printf("String error!®);
will result in the error message display since the position, 6, is not in the

range of the string, “error". The remaining string functions do not have
return codes.

IKSTALLATION LIBRARY
4 - 33

LC LIBRARIES .

CONTROL FUNCTIONS

BARLITBVBAVRAIZITTRES

The remaining functions included in the installation 1library not
previously detailed perform miscellaneous tasks. The syntax of these
functions is as follows: * B

38.83333838383333&82888833838833833333338833338888338388:338*88

: f111(buffer, count, char); - Zzap a memory block |
: retcod = freemem(); - fetch memory size {
{ retcod = inkey(); - scan the keyboard ;
} retcod = inport(port); - input from a port : ”
: outport(port, va]ue): - output to a port l
: retcod = curpos(); - fetch cursor position :
{ cursor(row, col); - reposition the cursor }
| date(s); - fetch the system date |
| timg(s); - fetch the system time |
cmdi("comnand string“)2 . = exit & command DOS
| ‘retcod=cmd(“command string®); - command DOS & return |

| retcod=call(address, regs); generalized call !

:,ssmmsasaaznaasaasasamsaa8ummaa:sz:’sa:nammxﬁ:nnammssmwasaazm:suaszazss

The function, fill1(), will propagate the character, “char*, into the
memory “buffer® for “count® bytes. If “char® is passed as an integer value,

the low-order byte 1is used for the propagation. Note the difference between
strept() and fill().

INKEY()

The inkey() function makes a single scan of the keyboard and returns the
ASCII value of any depressed key. It wi]l return a zero if no key is pressed.

INPORT

D D B> W D S

The function, inport(), returns as an integer, the value read from the
specified port.

INSTALLATION LIBRARY
4 - 34

-

LC LIBRARIES

OUTPORT()

The outport() function outputs the integer value to the poft. The value
is truncated to its low-order byte.

CURPOS()

The current location of the cursor can be recovered with the curpos()
function. It returns the cursor position as an encoded value. The cursor row
is in the high-order byte while the cursor column occupies the low-o;ger byte
of the integer return code.

CURSOR()

To reposition the cursor, use the cursor() function. The cursor is
re-positioned to the location identified by the arguments. If the position
that would result is not on the CRT screen, a range error (-1) is returned.
“x* must be in the range, <P-63>, while "y" must be in the range, <B-15>,

DATE()

e an ws T -

The date() function will place the system date inta the string “s®. The
format 1is MM/DD/YY. The string should be defined as a character array of
mininum dimension 9.

TIME()

- aw s o W -

The time() function will place the system time 1into the string "s*. The

format 1is HH:MM:SS. The string should be defined as a character array of
minimum dimension 9.

CMDI()

The function, omdi(), will invoke an exit from the running LC program
and schedule the DOS execution of the command contained in string “command
string®. This could be used, for instance, to chain to another C program. The
cmdi() argument can be either a string defined in the function call or a
pointer to a character array which contains the command string. '

If you want to execute a command and return to your. LC program, use the
cmd() function. This function will pass the command stored in string “command
string* (or the string pointed to by a pointer argument) to the DOS command
interpreter. Upon completion of the command, control will be returned to the
running LC program. Your program and variables will be saved during the

-
-

THSTALLATION LIBRARY

4 - 35

LC LIBRARIES.

execution of the command. If the executing command returns through GEXIT, a
return code of zero (@) will be retrieved. If the @ABORT exit is taken, the
return code generated will be obtained from the value contained in register
pair "HL®. If this value is positive (i.e. bit 15 reset), it becomes the
return code. If the value is negative (i.e. bit 15 set), then a negative one
(=1) will be returned.

A generalized assembly language interface routine, call(), is available
in the installation library. “Regs" is an integer array of dimension 6 which
should contain the quantities you want placed into the register pairs ({AF,
BC, DE, HL, IX, and IY for regs[@l-regs[5] respectively} prior to calling the
routine at location "address*. The "regs" array will be stuffed with thg
register contents that existed upon return from the called routine. The
return code will be zero (@) if the Z-flag is set upon return from the called
routine; otherwise, the return code is one (l). For more information on the
use of call(), see the chapter on ADVANCED TOPICS.

FREEMEM()

LT Y] »o o

Freemem() returns the maximum amount of memory which can be obtained
from alloc() or sbrk().

—

_INSTALLATION LIBRARY
. 4 - 36

-

LC LIBRARIES

LC FLOATING POINT LIBRARY

BABVRBLDBRIZ TR ETIZBIZ I

LC does not have floating point arithmetic built into the compiler.
- Thus, floating point expressions are not allowed in the normal manner.
However, this floating point function library allows the programmer to use
the floating point routines built into the TRS-8@ BASIC ROM. These functions
provide access to single and double precision math, all the trigonometric
f:nitions, random number generation, and conversion to and from ASCII
strings.

Before any floating point math can be done, the function *fpinit()" must
be called. Fpinit() initializes some data areas used by the TRSA80 ROM
floating point routines and sets up linkages for error recovery. The calling
of fpinit() and the automatic search of the floating point 1library is
accomplished when you add the compiler declaration:

#option FPLIB

to your C-language source program. This establishes the protocol necessary to
invoke an automatic search of the floating point. library in the LC/ASM file
via the "“*SEARCH FP/LIB* statement. The floating point initialization
function, fpinit(), is normally called automatically by LC's initialization
routines if “#option FPLIB* has been specified. However, if the user changes
or substitutes different initialization code, the user's program must call
fpinit().

Numbers may be stored in two different formats: single or double
precision. Throughout the ‘library routines two consistent abbreviations are
used: *f" for floating point SINGLE precision, and *d" for floating point
DOUBLE Precision. Functions beginning with or containing either of these
abbreviations operate on the precision indicated. Single precision numbers
are stored in four bytes; double precision numbers in eight bytes. The
programmer may declare either an integer array, or a character array to
allocate space for variables in their program. Both of the statements,

char fpnum{4];
int fpnum(2];

declare a 4-byte single precision field. Both of the statements,

char dpnum{8];
int dpnum[4];

declare an 8-byte double precision field.

Take care in how you pass the parameters required by each function: THE
ADDRESS OF THE FIELDS ARE PASSED. Thus, if the declarations, “char
fpnum[4],dpnum[8];*, are used when calling a floating point 1library routine,
the address of the first character (represented by the array name) should be
passed. For example:

atof("3.1416", fpnum);

.
rl

FLOATIKG POINT LIBRARY
4~ 37

LC LIBRARIES

atod(“3.1415926°,dpnum);

converts the strings containing PI to single and double precision and places
the results into memory at locations fpnum and dpnum, respectively.

If you are writing an assembly language routine that will interface to
the FP/LIB routines, the assembler statement: ~

@ FPLIB DEFL -1

should appear in your code. This statement forces a search of FP/LIB in the
LC/ASH file.

We wish to acknowledge our indebtedness to Insiders Software
Consultants, Inc. for their book, THE B@@K - ACCESSING THE TRS-8@ ROM, Volufé
1, which provides vital information on interfacing to the ROM math routines.
Although the functions in FPLIB do not require any knowledge of how the BASIC
ROM in the TRS-8§ functions, it can be helpful to have “THE B@@K" for a
refergence to explain the details of floating point operation.

.* FLOATING POINT LIBRARY

4 « 3

LC LIBRARIES

FPINIT

This function is used to initialize interfacing to the ROM math routines
and force a search of the floating point library during the assembly of
LC/ASM. Its syntax is: ‘

I
g fpinit(); =
{ - there are no arguments. ;
» ‘.?

" This function 1{s normally called automatically by an LC program which
has any module specifying “#option FPLIB®. In cases where normal
initialization has been bypassed, a direct call to fpinit() by the user
program will be necessary since fpinit() MUST BE CALLED before using any of
the floating point functions in the library. It sets up certain data areas
used by the floating point ROM routine§, and provides error recovery linkage.

FLOATING POINT LIBRARY
5 - 39

LC

SINGLE PRECISION OPERATIONS

BEADSIDILBBITTIIDSSIATRRBZER

The following functions can be used to operate on
fields (length 4). Their syntax is as follows:

LIBRARIES

R R R S R R S I ST SRR RN RN NN ET IRV ATEIRIILITBEBR

retcod = fadd(vl, v2

retcod
retcod
retcod
retcod
retcod
retcod
retcod
retcod
retcod
retcod
retcod
retcod
retcod
retcod
retcod
retcod
retcod
vl & v2

fsub(
P 1 (
fdiv(
fabs(
fatn(
femp(
fcas(
fexp(
Frix(
fint(
flog(

fraise(vi, v2);

vl,
vl,
vl,
vl,
vl,
vl,
vl,
vl,
vl,
vl,

vl,

v2
v2
174
74
v
v2
v2
v2
74
v2
ve

)
);
);
)s
);
);
)i
)
B
);
)
);

frad(vl, v2);

fsgn(vl);

fsin(vl, v2);

fsqr(vl, v2);
ftan(vl, v2);

- are the address of single precision fields.

vl
vl
vl
vl
vl
vl

compare vl to v2

vl
vl
vl
vl
vl
vl
vl
retcod
vl
vl
vl

- FLOATING POINT LIBRARY

4 - 49

vl + v2
vl - v2
vl * v2
vl / v2
abs(v2)

arctan(v2)

cos(v2)
exp(v2)
fix(v2)
int(v2)
log(v2)
vl ** yv2
rnd(v2)
sgn(vl)
sin(v2)
sqr(v2)
tan(v2)

I
I
|
|
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
!
I
I
|
I

single precision

“~y

Wy

LC LIBRARIES

These functions perform calculations on two single precision fields and
place the result in the first field specified :in.the argument list (vl). I
the event of an error, vl is unchanged and can be examined to determine the
cause of the error. Only SINGLE PRECISION variables can be handled properly

by these functions. Use the format conversion functions described"iztEr in
this section to derive the proper precision.

RESULTS

In all of these functions, vl will contain the result of the calculation
if no error is detected. Any error (such as overflow, underflow, etc.) will
leave the vl argument unchanged. The argument “v2" is not altered in any way
by the functions.

RETURN CODES

Each function has a return code of zero (@) if no errors occurred during
the operation; otherwise, it will return a LEVEL II BASIC error code. The
fcmp() function returns -1, @, or +1 depending on whether vl 1is less than,
equal to, or greater than v2. Typical error codes would be:

Syntax error

Illegal function call [log(negative number)]
Overflow

Division by zero

—Ch NN
g0 8 8

FLOATING POI%&}" LIBRARY
4 - 4

LC LIBRARIES™

DOUBLE PRECISION OPERATIONS

BARSESICTITEBIVRNCTTIIRRESRIBIBSE

The following functions can be used to operate on double precision "

fields (length 8). Their syntax is as follows:

sssssasssssssssssssssssssssssssSsISssSIssssssssssasssasssssssea
{ retcod = dadd(vl, v2); - vl = vl + v2 :
retcod = dsub(vl, v2); - vl = vl - v2 }
| retcod = dmul(vl, v2); | - vl = vl * v2 E
| retcod = ddiv(vl, v2); - vl = vl / v2 | o
retcod = dabs(vl, v2); - vl = abs(v2) {
| retcod = dcmp(vl, v2); - compare vl to v2 }
‘retcod = dfix(vl, v2); - vl = fix(v2) {
| retcod = dint(vl, v2); - vl = int(v2) E
: retcod = dsgn(vl); - retcod = sgn(vl) :
i vl & v2 - are the address of double precision fields. i

These functions perform calculations on two double precision fields and
place - the result in the first field specified in the argument 1list (vl). In
the event of an error, vl is unchanged and can be examined to determine the
cause of the error. Only DOUBLE PRECISION variables can be handled properly
by these functions. Use the format conversion functions described later in
this section to derive the proper precision.

RESULTS

3 O T O

In all of these functions, vl will contain the result of the calculation
if no error is detected. Any error (such as overflow, underflow, etc.) will

leave the vl argument unchanged. The argument “v2* is not altered in any way
by the functions.

RETURN CODES

Each function has a return code of .zero (@) if no errors occurred during
the operation; otherwise, it will return a LEVEL II BASIC error code as

described in the list under SINGLE PRECISION. The dcmp() function returns -1, -

@, or +1 depending on whether vl is less than, equal to, or greater than v2.

-FLOATING POINT LIBRARY
4 - &%

LC LIBRA

DATA CONVERSION FUNCTIONS

BEIBARNSTLISIVIITBRTIIIISE

The need will
precision, integer, and ASCII string. The fo]lowingﬂfunctions exist for this

purpose:

arise to convert

RIES

between double precision, single

RESEECS SRR ST TEAIANEIRTALEIITIZIZIITIIZITTITIISTSITIRIIINIDRRIIITIV I

retcod
| retcod
intval

retcod

retcod
retcod
retcod
retcod

intval

dgzr
| fvar
intval

jvar

| str
|

retcod = atod(str, dvar);

= atof(str, fvar);

= dtoa(dvar, str);
dtoi(fvar);
dtof(dvar, fvar);

ftoa(fvar, str);

ftod(fvar, dvar);
itod(ivar, dvar);

itof(ivar, fvar);

ftoi(fvar);

|
ASCII to double

ASCII to single
double to ASCII (7

double to 3nteger

double to single
single to ASCII

single to double
integer to double

integer to single

specifies a double precision field.

specifies a single precision field.

specifies the integer value returned.

specifies an integer value.

specifies a character string field.

I
|
|
|
|
|
|
I
}
single to integer {
|
I
J
|
|
|
i
|
|
|

BEJTEXIAIZITAZTITIIZTRATZTERITEZIDITRNIAIZZISIIZITEITIITRNEEZETI LI RAIIRNIDIIN

The above conversions should be self-explanatory. The conversions not

shown above that convert ASCII to

standard library and are documented in

LIBRARIES.

integer and vice versa, are part of the

a preceeding section of the LC

The C itoi() function ha§ not been implemented, for obvious reasons.

FLOATING POINT LIBRARY

4 - 43

LC LIBRARIES-

FLOATING POINT EXAMPLE ~

BRI RIVSIRGERIZBZBT A

The following illustrates how the floating point library can be used in
an application. The example is derived from K&R, page 8.

/* fctab - print Fahrenheit-Celsius table

- for f s -8, 12, 32, ..., 312 %/

#include stdio/csh /* include standard header file */
#option fplib /* force search of FPLIB */

main() V ‘

{

/*

*/

int lower, upper, step, fahr;

char celsius[4]; provide space for “float* */

char fivedivnine[4]; /* space to hold (5.0/9.8) */ ~3
char temp[4]; /* temporary work space */

char thirtytwol(4]; /* space to hold 32.8 */

char celsius_str[8]; /* space for ASCII result */

~
3

lower = -8; /* lower limit of temperature table */
upper = 312; /* upper limit */
step = 20;: /* step size */

Note that the calculation (5.8/9.6) was removed from the
body of the “while" loop to speed up calculations!

atof(“5.8%,fivedivnine); /* float 5 */ T
atof(*9.9", temp); /* float 9 */
fdiv(fivedivnine, temp); /* calc 5.8/9.8 */

atof ("32.8%, thirtytwo); /* float 32.0 */

fahr = lower; /* initialize to starting value */
:hile (fahr <= upper) /* *fahr* & “upper* are integers */
itof(fahr,celsius); /* float fahr */

fsub(celsius,thirtytwo): /* fahr - 32.9 */
fmul(celsius,fivedivnine); /* (5.8/9/8)*(fahr-32.8) */
ftoa(celsius,celsius_str); /* result to ASCII */
printf(*%-6.3d %-8.8s\n",fahr,celsius_str);

fahr += step; /* note the assignment operator */

.FLOATING POINT LIBRARY
‘ 4 - 34

\(

ADVANCED TOPICS

UTILIZING ASSEMBLY-TIME OPTIONS

LC provides certain optiods which can heiﬁ,%he programmer to generate

efficient programs. These options can be specified from the C source code by..

using the #option statement. The defaults to these options are set in the
file, LCMACS/ASM, so that no options need be set, except when the default is
not the desired option. Since the #option statement generates a DEFL
statement in the assembly language source output, it can also be used to
control options in any user libraries or separately compiled modules. If used
to control options in separately compiled modules, the #option statement must
be in a module which precedes the module whose option is to be specified.

Bear in mind that an option, once set, can be changed by another~#option
statement. Thus, when assembling separately compiled modules, care should be
taken that a later module will not change the option set in the current
module, unless this is desired.

Options which are switches can be set to ON (-1) or OFF (@). These
specify whether or not some option is to be active. The constants ON and OFF
are defined in STDIO/CSH. Options which are not switches may be set to the
value desired by specifying the value in the #option statement.

ARGS

This option controls the generation of argc and argv, the command line
argument parsing. If the option is turned ON, the arguments are created and
placed on the stack so that the user may access them from main(). If turned
OFF, some savings in memory result, as no parsing of the command 1line is
done. ARGS defaults to ON. For more information on argc and argv, see K&R.

FIXBUFS

This option, 1if set to ON, will cause standard I/0 to pre-allocate all
buffers needed for standard 1/0. This eliminates the need for the dynamic
memory functions to be loaded, and prevents users from locking themselves out
from further fopen()'s by allocating all of memory. This also guarantees that
the standard I/0 files can always be opened if the program is loaded. When
dynamic allocation (fixbufs is off) is active, a program, once loaded, may
not be able to allocate enough memory to open the standard files, resulting
in an error message and an abort.

- FIXBUFS defaults to OFF,

Whenever the floating point library is to be accessed, this option MUST
be specified. It controls the initialization to the '8@ ROM, as well as the
searching of the floating point library. For this reason, it must be included
in EVERY module which uses floating point. However, it must never be turned
OFF by a module. This will result in undefined symbols at assembly time if it

‘ ASSEMBLY OPTIOQMS

"
5 « 1

ADVYANCED TOPICS

was previously turned ON. This option may be turned ON by the graphics
function in the standard library.

FPLIB defaults to OFF,Vto avoid unnecessary linkage and searching.

KBECHO

oooooo

In certain types of programs, such as screen and graphics editors, the
programmer may choose to disable the echoing of characters typed at the
keyboard. However, for most programs it is desirable to be able to see what
is being typed, even if standard output has been redirected. This option
allows this flexibility. When ON, KBECHO will cause the getc() function to
echo all characters input from the keyboard to the video. This holds true for
ANY file opened as “*KI®, not just the standard input.

KBECHO defaults to ON.
MAXFILES

~3

This option requires a numeric argument - instead of OFF or ON, as it is
not a switch. The number wili be used to set up coniroi storage for user
files. The maximum number of files which can be opened at the same time is
controlled by MAXFILES. The standard I/0 files are not counted in this
number. For example, if no user files were needed, then MAXFILES could be set
to zero. MAXFILES also controls the number of buffers pre-allocated when the
FIXBUFS option is ON. Thus, 1t is best to use MAXFILES when FIXBUFS 1is
specified to minimize the memory pre-allocated for file buffers.

MAXFILES defaults to allow the user eight (8) concurrently opened files.
REDIRECT |

W TD S WD G D Y B

The REDIRECT switch controls the I/0 redirection feature of the standard
library. When REDIRECT is ON, standard files can be redirected by command
line specification. When OFF, no redirection processing takes place, and the
standard 1/0 - files are set up as permanently attached to the keyboard and
screen. The REDIRECT switch overrides the ARGS .switch; {1f REDIRECT 1is ON,
ARGS is also forced to ON.

REDIRECT defaults to ON.
ZVAR

The ZVAR switch can be used to invoke the initialization of all
variables to zero. If ZVAR is not optioned, only space will be reserved for
variables and their initial values will be undefined. Note that this switch
option may be turned off or on throughout the program.

. ASSBHELY OPTIONS

g

*

/7

ADVANCED TOPICS

SEPARATE COMPILATION

LC supports separate compilation: functions and modules can be compiled
at different times, then assembled together to produce one program. This
facilitates the creation of compiled function libraries, and results in great
time .savings. Commonly used functions can be compiled once, then only
assembled 1into new programs, without recompiling. Large programs may be
segmented and each segment compiled separately, then assembled as a whole.
Witn the “extern® and “static® statements, the variables used in a module may
be specified as external or local.

When separately compiling modules which reference variables in other
modules, two approaches may be taken to supply declarations for the shared
variables. The “-global® option of LC may be turned off and on, so that only
one module actually defines the space for global variables. The other method,
which is the proper method and results in better structure in programs, is to
define variables as extern when referenced by all but one of the modules.

USING THE -GLOBAL OPTION OF LC

A1l shared global declarations should be placed in a separate file, to
be #include'd by all modules which use them. Only one module can have +Global
specified when compiled; all other modules must be compiled with -Globals in
the LC command line. It is usually convenient to use +Global when compiling
the module containing main(). This method is not normally recommended. It is
only supplied as a convenience to those attempting to compile extremely large
programs already written without using extern and static. It is best to learn
to structure your functions into "units®: modules containing a set of related
functions and their related internal and shared variables.

USING EXTERN AND STATIC

When writing a large program, it is best to try and logically structure
your program into modules containing related functions with the data
structures they use within the same module. Any data structures or functions
in a module which need not be accessed by any external function can be
declared as “static“. These static functions and variables will be unique in
name when assembled, and will not be accessible to other modules, so there
will be no conflicts in naming. Those data structures and functions declared
in the module which need to be accessed by functions in other modules should
be declared without any storage class. This causes these functions and data
structures to become “external", meaning that they are defined in this
module, and can be accessed from other modules. When using a function or data
structure declared in another module, the "extern" statement is used to
declare the type of the object. "extern" is required for accessing variables
outside the module. However, a function may be used without an “extern®; the
compiler will assume that the function returns an integer value. If any other
result is returned, the function must be declared “extern. :

.t SEPARATE COMPILATION
5-3

ADVANCED TOPICS

ASSEMBLING SEPARATELY COMPILED MODULES

Each module must be read and assembled by EDAS in the same assembly. The
*GET assembler directive is used for this purpose. A file should be created
with *GET statements for all modules to be included in a program. This file
name 1is then.specified as the program name when assembling when using LC/ASM.
Here is an example of the GET file

(listing of MYPROG/ASM)
*GET MYMAIN

=GET MYFUNCS

*GET MORECODE

When assembling, load LC/ASM into EDAS and then issue the following
<C>hange command:

C/CPROGRAM/MYPROG/

to set up the *GET filename. Then assemble as you would normally.

~y

-

. SEPARATE COﬁ?ILﬂTION

ADVANCED TOPICS

CREATING USER LIBRARIES

We encourage LC users to create libraries of commonly used functions.
This increases your productivity, since functions need not be rewritten for
each program. A library should contain functions which are self-contained;
i.e, they do not require the calling function to know about the 1library
module's internal structure, and do not assume anything about data structures
that the calling function declares. In structured programming lingo, library
functions should be data-coupled and functionally cohesive. Also, functions
?hould be tested and be well debugged before being placed in a function

ibrary. -

IN-LINE LIBRARIES ' ¥

A user library can be created by appending LC output (assembly source)
files together. The assembly of each function in the 1library can be
controlled by the IFREF pseudo-op available in EDAS. When you reference a
user library function in your program, the subsequent assembly of the program
will cause the IFREF to be true for that function. Otherwise, if you have not
referenced (called) that function, IFREF is false, so the function 1is not
assembled. This method is simple and does not require the use of the PDS
utility. Its disadvantage is that the entire 1library must be read by EDAS
even if some of the modules do not get assembled. The *SEARCH directive for
searching PDS libraries in EDAS is much faster for larger libraries.

The creation of an in-line (one after another) library should go
something like-this: The user types the following commands:

EDAS YOU TYPE

- e oy . am - T OB D D G D D D TP TS WD TR D TR WD AR WS KD W W D G G Eh WGP TR T T WD D G D W A A R R R O U A

> I <ENTER> (NOW IN INSERT MODE)
$0100 IFREF FUNCA :
§01190 <BREAK> (EXIT INPUT MODE)
> LFUNCA (LOAD THE FIRST FUHCTION)
> 18 (INSERT TO BEGIN AFTER LAST)

92430 ENDIF
@2449 IFREF FUNCB :
92450 <BREAK> (BREAK TO EXIT INPUT MODE)

> LFUNCB (LOAD THE SECOND FUNCTION)
> 1B

$4419 ENDIF

P4a42@ <BREAK> (HIT BREAK TO EXIT INPUT MODE)
> W USRLIB:l (SAVE THE LIBRARY ON DRIVE 1)

PN CREATING LIBRARIES
5 -5

ADVANCED TOPICLS

Any number of functions can be added in this fashion, by appending to
the existing library. Each function could also be edited separately and then
appended together with the LDOS APPEND command (use the STRIP parameter 'of
APPEND to remove the EOF byte (X'lA') from “library“ when you are appending
another module). This process generates a library which looks like this:

IFREF FUNCA
(FIRST FUNCTION)
ENDIF
IFREF FUNCB
(SECOND FUNCTIOW)
ENDIF
(AND SO ON...)

A different approach is needed when several functions have been compiled
together in the same LC invocation. A temporary label is needed to control
the invocation of the module. This type of construct looks like this:

$INVOKE_IT LEFL @ ;Default to no invocation
: 1FREF FUNCA
SINVOKE_IT DEFL -1 iGet it
ENDIF
IFREF FUNCB
$INVOKE_IT DEFL -1 ;Get it
ENDIF :
IFREF FUNCC -~
$INVOKE_IT DEFL -1 sGet it
ENDIF '

kol -
tow invoke the module if needed

Hatak
IF $INVOKE IT
(THE MODULE GDES HERE)
ENDJF

With the construct shown above, the module will be assembled if any of
the functions are referenced. It is better to separate the functions into
separate modules if posiible.

P Go OO

An in-line 1library is searched by EDAS sequentially from beginning to
end. Therefore the order in which functions are placed in the library becomes

important. If a function in the library is called by another function within

the library, then the calling function must appear first. This is because the
IFREF for the called function will not be true until the calling function is

?ssgmbled. So the generul rule is: Calling functions first, called functions
ast.

PDS LIBRARIES

D € HD D QD TD O Q) TP AP Y D 4D

The libraries which tome with the LC compiler are actually Partitioned
Data Sets (PDS). APDS is a file which is partitioned into individual
members. The Partitioned Data Set (PDS) utility, available from MISOSYS, is

CREATI?G LéBRﬂRIES

/

ADVANCED TOPICS

-used to create and maintain PDS libraries. PDS members may be executable

commands, data files, source files, etc. In the case of the LC libraries each
PDS member is an assembly source module. EDAS searches PDS libraries by
performing an IFREF check on each member name. Only those members which have
been referenced but not as yet defined are read and assembled by EDAS. For
the rest of this discussion we shall assume the reader has a working
knowledge of the PDS utility. '

The PDS(BUILD) command is used to create and initialize a PDS library.
Once created, modules can be appended to the library using the PDS(APPEND)
command. The function name in a module is limited to eight characters, with
no underline allowed. When the module contains only one function, it is
convenient to have the module name be the same as the function name. In this
case the command:

pds(append) myfunc/asw my/1ib.pds

is sufficient to add the function myfunc() to the library my/1ib. Note that
it is necessary to specify the password when issuing a command which writes
to a PDS. The (data) parameter tells PDS that the member is not an executable
program -

~y

When a module contains more than one function it becomes necessary to
use a PDS map file. The entry point specified in the map file is not
important. The names of all the functions in the module which are to be
accessible when searching must be placed on one line in the map file. For
example, if a module file MYMOD/ASM contains three functions, funcl, func?,
and func3, then the map file, MYMOD/MAP, would look like this:

mywod/asm, funcl,@, func2, @, func3,
and the command to append the module to the library, MY/LIB:

pds(a) mymod my/1ib (map)

PDS will assume that "“mymod* has an extension of /MAP. The (map)

parameter tells pds that MYMOD/MAP has the information needed to append the
module.

Unlike in-line libraries, the order in which members are appended to a
PDS library does not affect the functioning of the library. EDAS continues to
search the library until no further references can be satisfied by the
library. Thus, members may be appended 1in any order, purged and reappended,
etc.

‘ CREATING LIBRARIES
5 -7

ADVANCED TOPICS

LC ASSEMBLY LANGUAGE OUTPUT STRUCTURE

NSRBI ERTEBEITREBTESSLDIRTRTBTITRLRERS

LC generates a rather unusual assembly output file. LC depends on
certain macro's in the file, LCMACS/ASM, which maintain and provide access to
two separate program counters. These macros allow LC to declare variables and
define strings in the middle of a function, without interrupting the actual
generation of code to perform the function. The macros also cause all
variables and strings to be placed together at the end of the program. These
macros MUST BE USED if you are interfacing (with assembly Tlanguage) to the
variables generated in a module compiled by LC. Failure to access variables
using the macros will result in the wrong address being used.

LC PROGRAM MEMORY MAP

CIVBERBCBERIIBUBBERBBS j"g

LC programs, once assembled, have the following structure in memory:

| @START (usually 5200H) |
LC programs begin execution here. |

LC-generated modules, user assembly language |
modules. -

User library functions.

- A1l library functions from LC/LIB, FP/LIB, -
IN/LIB
| $$STORG

Program variables and strings generated with LC
Macros.
OPROGEND

Memory allocated by sbrk(). In use by the program

|

|

|

|

|

: |

ame |
|

|

I

|

or maintained by alloc() and free(). I
|

@LOMEM

...... - an

. Unused memory available from alloc() or sbrk().
SP-1024

LC program stack - local variables stored here.
1024 bytes of unused space. LC always reserves 1K
for the program stack when requests for dynamic

dynamic allocation of memory are made.
HIGHS - Z-8§ SP :

BRGNS S R R R S R N S AR NS RSN I IR IR RES S

.~ ASH OHTQUT gTRUCTURE

ADYANCED TOPICS

LC MACROS

It is important to understand how to use macros in order to directly
interface to variables declared by LC programs. However, it is not necessary
if you are writing a function which will not access LC-declared variables.
For' more information on the use of the EDAS macro capability, see chapter six
of the EDAS manual.

The macros in LCMACS/ASM are as follows:
$S0RG

- e o . .

~5
$SORG switches the EDAS program counter to the variable storage area.
The current executable program counter is saved in $$TEMP, to be restored by
a $PORG macro. Anything assembled by EDAS after $SORG will be placed at the
end of the program, past all code assembled in the $PORG (normal) sections.

This macro recovers the original program counter saved by the $SORG
macro. The variable storage program counter is also saved, so that the next
$SORG will continue where the last left off. WARNING: a $PORG must follow a
$S0RG only, not another $PORG. The proper program counter will be lost if a
$PORG 1s done when not in the variable storage area.

$VAR #NAME , #SIZE

A1l external variables are declared by LC using the $VAR macro. A data
area will be defined which is designated by the #NAME given, with the #SIZE
given. Any references made to variables declared with the $VAR macro are made
using the following macros:

This macro 1is used to prepare for the definition of a string. The HL
register pair is loaded with the current storage program counter, and the
EDAS program counter is switched to the storage area counter. The program
counter must be in the program area before the $LSTR macro is used. _

$LOS #NAME

This macro gets the address of the variable #NAME into the HL register
pair.

ASH QUTPUT STRUCTURE
5 -9

ADVANCED TOPICS

$GETB #NAME

ooooooooooooo

This macro fetches the contents of the character variable #NAME into
the HL register pair. The H register will be loaded with zero, and L will
contain the character.

D T AN D GY D G D TH A KD D

The $GETW macro fetches the two-byte integer stored at #NAME into the HL
register.

$HS #NUM

~3
The $HS macro points HL to the value “SP+NUM® (SP refers to the stack
pointer). It is used to obtain the address of a local variable.

$PUTB #NAME

The JPUTB macro writes tihe character in the L register into character
variable at #NAME.

SPUTH #MAME

—o—

The $PUTW macro will write the integer value in H.L into the two-byte
integer variable at #NAME.

. ASH OUTPUT STRUCTURE
. 5 -10

ADVANCED TOPICS

LC IDENTIFIER OUTPUT

LC makes extensive use of the "*MOD" directive in EDAS. This EDAS
assembler directive causes a unique one or two character alphabetic string to
be assigned to a GET/SEARCH module. This replacement string is incremented
each.time another *MOD directive is encountered Every occyrance of '?' in a
label is then replaced with the module's unique replacement string. For more
information on the *MOD directive, see chapter five in your EDAS manual. The
following table outlines the format of label generation from LC:

UL EFLLSITRSTETELIBXIDIBIABERETRIEEIVREDEAZTEIATEIDAIBLTRTIRE

|
| IDENTIFIER CLASS LC OUTPUT | ~
| Temporary labels $7# |
| : . |
| External identifiers NAME |
I -longer than 3 characters NAME |
= -3 characters or less NAM$ =
| Static identifiers |
-external to functions NAME@? |
-internal to functions NAME@?* ‘
|
Goto labels NAMES?* g
| NAME, NAM LC identifier, 1 to 8 characters, |
- upper case {
| # The temporary label number =
|
| = The function number (within the module) =
I
R RS R RN T ECITATTTRIARTITITI IS TS TTIIIT IS AVIEITI TS

LC generates labels in this fashion so that static variables, external
variables, and labels will not conflict with each other. Thus, there can be
an external variable named x, a4 module static named x in two different
modules, a static named x in two different functions in the same module, and
a (goto) label named x, all within the same program, with no conflicts. The
'?' module substitution character in the labels will make labels unique
within each module, while the function number appended to labels will make
labels unique within each function. A dollar sign, 'S$', is appended to
external 1labels which are three characters 1long or 1less. This prevents
possible conflicts with register names and logical operators in EDAS.

Temporary labels are used by LC to implement conditional statements and
operators, and Tloops. They are assigned numbers starting at 1, and
incrementing by 1. The dollar sign, '$', as the first character allows you to
suppress all temporary labels from your symbol table output by using the -SL

switch of the EDAS <A>ssemble command. The '?' makes temporary labels unique
within each module.

. ASH 0UT§UT iTRUCTURE
-11

ADVYANCED TOPIECS

RUN-TIME SUBROUTINES

A program generated by LC performs logical, arithmetic, and data
manipulation operations through two registers: the HL and DE register pairs.
HL is the primary register; DE is the secondary register. The stack is used
extensively to store intermediate results as expressions .are evaluated.
Certain operations are performed using subroutines in LC/LIB. These
subroutines are: ! .

BRRBAVUSBEETEUBSBTILETETBLEAZLEIZTXLCLLTTEXRRBETARILSREIBBEES RN S

SUBROUTINE OPERATION PERFORMED

I
@GINT get integer in memory at (HL) into HL ~y
@PINT put integer in HL into memory at (DE)

| @OR bitwise OR of DE with HL |
€X0R bitwise exclusive OR of DE with HL
GAND ‘ "bitwise AND of DE with HL

| @EQ returns DE == HL |
ONE returns DE != HL
@eT returns DE > HL
eLT jreturns DE < HL
6LE returns DE <= HL :
6GE returns DE >= HL -

| eust returns unsigned DE >= HL |
eULT returns unsigned DE < HL :
euaT returns unsigned DE > HL
GULE returns unsigned DE <= HL
QuCHP . unsigned compare DE-HL non-destructively
@ASR arithmetic shift right of DE by HL
@ASL arithmetic shift left of DE by HL
eNEG returns two's complement of HL
@coM - returns one's complement of HL
eNoT . returns logical NOT of HL |
@MULT multiply DE by HL to HL
@pIv divide DE by HL, returns remainder in

| DE, quotient in HL |

FRETBVVCRITALBBRRMRDEBEABEAREIRLLEBTRAEBURIERETRESERBRACETERRREN

- ASH OUTPUT STRUCTIRE
. A e 4

-

ADYANCED TOPICS

ASSEMBLY LANGUAGE INTERFACING

BRIBDBVALISSTSESIUTITRSNIVITIZ

While it is possible to insert assembly language source code directly
into your LC program using the #asm-#endasm construct, it is much cleaner to
interface by placing your assembly language code into a separate module. This
keeps all the non-portable code separate from the portable LC code. It is
best to call assembly language- as a function, rather than including it
directly into an LC function by mixing C and assembly source code.

REGISTER USAGE

3

A1l registers are available for use by the assembly language function.
The only stipulation is that the stack pointer must be returned in the same

condition as it was upon entry.

ARGUMENT PASSING

LC passes arguments on the Z-80 machine stack. Each argument is pushed
onto the stack as a two-byte value. Arguments are pushed in order opposite of
the order they are specified in the function call. Here 1is the assembly
language which LC generates to perform a function call:

: xsfunc(a,b,c);

. LD HL, (C$)
PUSH HL
LD HL, (BS)
PUSH HL
LD HL, (AS)
PUSH HL
CALL FUNC

This process generates the following structure on the Z-88 machine
stack:

(SP+6) ==> <>
(SP+4) ==>
(SP+2) ==> <&
(SP+) == return address

That is how the arguments appear to the called function when first entered.
There are several methods which can be used within the called function to
obtain the arguments. The simplest method 1is to POP each argument off the
stack. This is not suitable for large numbers of arguments, but most
efficient for 3 operands or less. Using the example above, the arguments
could be retrieved as follows:

FUNC PoP AF sreturn address saved
POP BC ;argument <a> in BC
poP DE ;argument in DE

ASH IWTERFACING
g . 13

ADVANCED TOPICS

POP HL ;argument <c> in HL

PUSH HL ;restore argument <c>

PUSH DE R "

PUSH BC 3 " " {®

PUSH AF ;stack is same as at entry

- Note that the stack 1s returned to its original condition.. It is always
important ' to keep track of the stack pointer. However, the contents of the
stack, i.e., the arguments, are “owned" by the called function and can be
used like any local variable. A better method to use when dealing with large
numbers of arguments is shown below: ‘ : : ,

LD HL,2 ;offset to <a
ADD HL,SP ;HL = address of <a
CALL 8GINT ;get contents of <& ~y

@GINT is a run-time library function which gets the integer pointed to

by HL into HL. See the previous section on LC assembly output structure for

more information. . :

Another method is to utilize the Z-8f index registers. The stack pointer
. must be placed into the index register first, then index offset values can he
-used to get and store the arguments:

LD IX,0 -
ADD IX,SP ;get SP into IX

LD L, (IX+2) ;get LSbyte of a

LD H, (IX+3) ;get MSbyte of a

If an argument is intended to be a character variable, only . the least
significant byte (LSbyte) is needed, so a single indexed load is used.

LABELS AND CONSTANTS

It is strongly recommended that the assembly language programmer utilize
the EDAS *MOD directive to assure that labels do not duplicate those in other

modules. The following method will assure that you will not have this
problem:

*M0D
VAR1E€? DW ¢
EQU267 EQU 2
FUNC ; your function here...
“JdR FUNC2@? igo to temporary label

FUNC28? ‘ © ;temporary label

By appending the 87, your label becomes unique from all others in an
assembly, assuming that you placed a *MOD directive at the beginning of the
module. Keep in mind, however, that other modules cannot get to these types
of variables, since the '?' is substituted at assembly time. Labels which

.~ ASM INTERFACING

5 - ik

ADVANCED TOPICS

must be accessed by other assembly language modules should be defined without
the '?' in the label (i.e. to keep them glaobal).

If a variable must be accessed by an LC module which is to be defined by
the assembly module, then the macros described earlier in this section must
be used to declare the variable, and to access it . within the assembly
language module. Examine the macros in LCMACS/ASM to see how they work, for
additional interfacing ideas.

RETURNING A VALUE

LC programs use the HL register pair for a 16-bit accumulator. Amy value
to be returned by a called function must be placed in HL before returning to

the calling function. Take care that a full 16-bit value is returned. If a
character or 8-bit value 1is being returned, then H should be loaded with

zero. If a true or false indication is to be returned, HL should be set to 1l
or @, accordingly.

CALLING MACHINE LANGUAGE ROUTINES

The call() function has been provided in the installation library to
standardize the invocation of machine language routines. The use of call() is
documented on page 4-36 and illustrated in the program, syscall, which may be
found in appendix D. .

———

‘ ASM INTERFACING
5 - 15

ADVANCED TOPICS

WHEN THINGS GO WRONG...

C is a language which offers great flexibility, but not without a price.

The price of C's freedom is the programmer's ability to make catastrophic
errors with ease. The programmer is not protected from himself when using LC.
Your best protection is to carefully check your programs when you write them,
for any evident errors before you try to run them. Of course, any time you
test a program you should not have any disks in your drives that you would
care about if they were suddenly erased. This 1is not to say that you
shouldn't experiment; quite the contrary. However, always be prepared for the
worst. ;

With LC, you have an advantage over other compilers. LC generates an
assembly language source file. You can debug the program withdut
second-guessing the compiler, or having to disassemble the compiled output.
The modularity of the program also helps, since there are clear interfaces
(functions) to breakpoint at. It would be helpful, though not essential, for
the programmer to have familiarity with the Z-88 instruction set and with the
debug facility of iDOS.

COMPILATION ERRORS

-

LC generates an error message whenever it finds something in the input
file that cannot be recognized, or that doesn't fit the syntax of the C
language. There are also some limitations in the LC implementation which can
cause. LC error messages to appear. When LC outputs an error message, it will
print the line in error and point to the particular character where the error
was recognized. The actual programming error is likely to be earlier in the
program, depending on the type of error. :

Some errors may not be detected until many lines later. For example, if
a closing brace is missing in the input file, LC will not be able to detect
the error until the next function declaration, which will then be flagged as
a function call without an ending semicolon. This is because LC thinks the
previcus function has not been completed. Similarly, if an opening brace is

missing, LC will not find out until the 1last closing brace is encountered,
with no match.

In the appendix of this manual is a list of the error messages which LC
can generate, and some 1likely causes for each. Most errors are usually
typographical, but the user should be well versed 1in the C language and the
LC implementation. Learn where to find information regarding syntax and
capabilities of the language. The language definition chapter of this manual

:;gt the appendix of the K&R text are good places to look when not sure of
ax,

.~ WHEN THINGS GO LRONG
5 ~ 18

w

ADVANCED TOPICS

ASSEMBLY ERRORS

There are few assembly errors which can occur if you assemble your
programs using LC/ASM and GET your compiled C modules. Your safest bet is to
use LC/JCL when compiling and assembling. If you have written portions of
your program in assembly language you may have a few more errors to deal
with. Please read the previous section on assembly language interfacing for
hints in debugging your assembly language.

If you are creating a CMD file directly from the LC/JCL file, you will
be aware of an assembly error if the JCL aborts from EDAS. To specifically
isolate the assembly error, you will need to execute EDAS, load the, LC/ASM
file, globally change CPROGRAM to the name of your C compiled output program,
then i?ssemble with the -WE switch, One of the following errors should
prevail.

UNDEFINED SYMBOL - A symbol which you referenced in your program was
undefined in any module in your program. This can be caused by omitting the
definition, misspelling the identifier, or defining them incorrectly. A look
at the name which is undefined will give you a clue as to which situation was
the cause. Misspelling should be obvious. Look out for upper-case versus
lower-case names. Remember that LC is case sensitive.

MULTIPLE DEFINITION - A symbol was defined twice with the same name. If
you are assembling separately compiled or user library functions, you may
have named two external variables or functions the same. To correct this,
make one or both of the identifiers static within the module. If separate
compilation.is not being used, you have defined two external objects in your
program with the same name. ;

It is wuseful to familiarize yourself with the previous section on LC
assembly language output structure. Also, if you are assembling separately
compiled or user library functions, a good understanding of the “extern"
statement and external versus static variables is essential. Refer to the
section on storage classes in Chapter 2, LC Language Definition.

WHER THIWES w0 WRONG
iy

r,

UNARY OPERATORS

:1 Qo § R %

VAVAIL + 0\ %
vV A

Cm
pI]

g =y

.c\}—.

APPENDIX -

OPERATORS

indirection (object at) cecevevecncescccoacecnnce
pointer (address of) Q.OQOQOOOQOODOQ'D0......"..
negation LN BB BN BN B BN B BN B Y BN BE B NN AU B N B BB K BN BN B BN AN BN BB L NN NN N)
]ogica] NOT S 08 0 0PSO UBO ISP PSS EDPEOSRESEIETEISITIIESOENTNOIROS
one.s Comp]ement PO OO ES OO OO0 ENOOREOPOOSOECEE SRS

increment SR OAOOERGOIORITOEONCNOESNPOGONITOLESEEOONSN

decrement P8 000000800000 NRLILINPIO0RNBRQBRNSIDOOES

BINARY OPERATORS

mu]tip]ication P8 PO PO OPNOTPNOTRIO OO ICOeCDEEIES
division L3 K 3K 2 B BN IR BE BN BN B B BK BN BN B BN BN BN OB NN IR R K B NN BN B N B BN I BN N M B N N]
modulus (remainder) ceceeccccecscccocsccccecascses
addition B0 0PSO OON OGP OOD NN T ORI EEDOCOCOIREESNSORS
SUDLraction cveececcoccenscessscscacscces cscesses
sh‘ft]eftO.l..00.0.--....0..00........

shift r]ght 0000 CBPSOOPEITNDEONEENOIOLSIROCIENEPIOOITSES

]ess than SO BN GSOONGEOIIIONBOOOSDIONEOSEOOOEN NSO

greater than S0 20 W OO0 TN PR O OOPO OO NP RRITOINNCESEORNDS
]ess than or equa] to Ve GO0 IPISODOTOSPRPIONONNSNOOCOSE
greater than or equal t0 cvececscscccccoacacnccas

equa] to OO PG O0NNSPOOROIQAESORSNRIOGINESINICEOPGTEIOSCGOEOSNOIDITE

not equa] to e GNP GIIOBOENSEDEOPODOENERNIINDOSG
bitwise AND LE N RN R NN INENENNEENNENENENKNEHSENJEEJSNNENRZJSENRSER}NEN}N]
bitwise exc]u5ive OR PO O ONSLOGOSCIIOPIIBNSBSECEEDIIDS

bitwise inclusive OR .ceeceveccescscecccsscnnecooc

]ogica] AND .‘..‘..Q.‘....'....O......C..........

1091(:3] OR no.o-oconocoovuoo-‘oocoo-oaoo.-oooo-o--
COﬂdit'iOﬂa'l (1f"the",-e]se) $08 0000600000080 00C0000

wf

2-17
2-18
2-18
2-18
2-18
2-18
2-18

¥

2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-22

2-22 -

2-22
2-22
2-22

assignment S8 0800600 OONSOETOETN GNP OINRNOSTCEREPESSOONSEO

[+=,

*s’ /:’

%=,

K=, >>=, k=,

Le OPERQKQRS
A -

"=, |=] ...

é=c3
2-23

b2

&

APPENDIX - OPERATORS

ptr‘ a]]oc(nbytes); LA R R R ERENNNNNNNENEENNNNYNNENNNEENNNTEYNY 4‘”2

retcod = atOd(str’ dvar);'...l....‘...‘.‘...’.; 4‘43”‘ o T

FetCOd = atOf(Str, fvar); Sss0s0srensrsessssnrseervoe e 4-43
1nt = atOf(dECS); IR RN N I N N W R A T E L X L X X N raraer 4993
retcod = box(funcod, xl1, yl, x2, y2); eceeeecceascanss 4<25
PEtCOd B Ca]](addrESS, PEgS)’ C.‘..Oo.oco‘..c..oolnc. 4‘36
retcod = circle(funcod, x1, yl, rl); ciieeeevveecnees 425
retCOd = Cﬂd(“Commaﬂd Strlng“)’ Sescesssersesseranoe e 4“35
Cmdf(“Commaﬂd Strlﬂg"). (A X RN N EREEN NN NN NTE FIE NI N W WA I 4‘35
retCOd = CUPDOS(); GO0 COIINOIENEEEIINOED IR EOSIOERRBESES 4’35
Cursor(row, €Ol); cccevecescscsccssscscnsccecoasssses 4=35
retCOd = dahS(VI, VZ); 900 CN 0000 NCREINCELIORORONIOOIOCOIBRIITS 4‘42
retCOd ol dﬂdd(Vl, Vg); 08000000000 R0SGEINROGOISIOIFSIEESIOIOTSTOETNTTDS 4-42
ddte(S); 00000000 000000000PRNIONIsEtEcRETOIOEOLILOOIOCOIORGOGOSTRES 4'35
retCOd deD(Vl, V2); 8000rr000s0Rs000asRENRTROIOIOIRNAES 4‘42
retcod dd1V(vl’ v2); (AN A NN RN RN NN NN N NN NNENRENNNNNNY NN 4-42
retCOd df1X(Vl, VZ); CP SOOI NOCEONSSCERBOONIOESIORUBOROOBDPOETSS 4-42
PetCOd diﬂt(VI, V2); 2900 0seeR sGNNIV OERIIOIOCEIOEINOTERIERRNTOSETS 4’42
PetCOd dmﬂ](VI’ V2); TN PN OIENC LIV ONSONIROITESELENSETTES 4'42
retCOd ngﬂ(Vl); eascssveee es0secs0seensseRssssene 4-42
retCOd dSUb(Vl, V2); PO PO OCITINOOCEIOBOIUOVOESLISISTAERES R 4-42
PetCOd dtOﬂ(dvar, Str); GO PN COSINSISIEOININOGIOEBSOOOIBROEOORBESEDS 4-43
intva] dtoi(fvar); LA 2L 2N B B 2N N B BN BN R BN N N AU N B R B A I NI BN NN N N 3 4.43
PetCOd dtOf(dvar, fvar); 0 066860 000008000 0000080 000000 4-43
ﬁx‘t(COde); G000 PPN NE0NE00NNENNIENIPEOEIREOIIEIODRIDS 4’04
retCOd = fahS(VI, V2); ®eeccesecscrsecrscrrnsssessresce 4"40
PetCOd = fadd(VI, VZ); 99 0esc0ss0ersssOCOssERLIEOIIOIRTOETLOE 4’40
retCOd = fatﬂ(Vl, VZ); © 000000 EE S CREPRRN0ORIERNGLES 4-40
retCOd = fC]Ose(fp); 0000000 000000000000 CCRIOIBOEIOISIOITSGTS 4‘“5
PetCOd = meD(Vl, V2); S0 OCPCECINIOEOEIOOEIOIOIRIROEIOIORRIIROTLTS 4'4¢

retCOd fCOS(VI, V2); 2080000080000 00000s008000s00e 4‘40
retCOd fd1V(VI, VZ); ®8 00000800000 s0REROISILIOICOIBOIEPOESS 4-40
bretCOd fexp(VI, V2); MNP0 E 0000000000 CENRCCEOEPROSIIAIRTOTES 4'40
retCOd ff1X(Vl, VZ); R R R R RN RN RN NN NN W N W 4'40
EOfind = fgetS(bUf, max, fd); S0 B NGEBINNREENSENERSOINS 4'“6
fi]l(bUffer COUﬂt Char)' #0000 000000000000000 00000 4‘34
retCDd = fint(VI, V2). toesevacerestrrvsssssesercesee 4‘40
retcod = f‘log(vl, v2)’ .C..........‘....O..........I. 4'4“
PetCOd = fmu](Vl Vz). ®evsessesesestsResNsRIOEIRIOISIRES 4'40
fp = fopen(fSpeC, mOde); S 2000080000000 0s00ssssRste 4'07
fpinit(); (AN AR AN EEENENEEREEERENEREENRNENNNNNNNENENNENNNNNNNNNWN 4-39
retcod .fraise(vl’ v2); L I B I N B N B IR O BB I BN NN NN I N A N N N 4-4g
retcod = fprintf(fp, control, argl, arg2, ...); 4-98
PetCOd = fputS(Strlng, fb), PP P 0SS NGO NPINGEOOIISENOIEDROEOIEDS 4““9
free(ptr). 00 0000000000000 00000000000CCEIOIRNEOIRIOISOIBOREOTIES 4‘10
retcod = freemem(); ..cceveesnecescecssccncsccocnssssss 4=34

PetCOd = frnd(Vl, V2); o8 0 es00tsees PN PERORELIIRLIERGDS 4‘40
TetCOd a ngﬂ(Vl); ooooo eP e PGP GOOEIOIOOEIOGIOIOTOEBIOIOIOTENROERES e 4‘4¢
retCOd = fSlﬂ(Vl. V2); *e PO B LN NOEIINOELIEIRIISIOEOIILIOESIOIOERNRBODS 4'40
retCOd = fsqr(Vl, VZ); eesseonsne eosveesse e sesvvessoe 4‘4@
retCOd = fSUb(Vl, V2); e s sescsssessscereeeNsIUNBOES 4-4¢
retCOd = ftan(Vl, VZ); R R R R IR R NN WA PSP PP R PR 4*49
retcod = ftoa(fvar, Str); cieeeeeeeccrececensccansss 4-43
retCOd = ftOd(fvar, dvar); LIRS A I A A I I I I I I S S O I Y 4’43

LIBRARY FUMCTIONS

=
5w ;‘E«

APPENDIX - OPERATORS

1ntva] = ftoi(fvar); B0 OO 0Q000000000000000CRBO0O0B00B0O0 4‘43
c b getc(fp), 20000000800 0000024000060000000e000908000060 4-11
c = getchar()' .Q.....‘.....l.......'....'..'....‘..". 4-12
eof‘ind = gets(buffer)’ 260N 000000C00000002RQAN0B00O000 4_13
retcod = 1nkey(). 29000000 NAEN000AV0S08000000RNOEGEROAIDOECDO 4-34
retcod = 1nport(port); BOOOBOLAQOOOIROROOO0ROODOOROQOQ 4-34
netcod = 1sa]pha(char); 0000080000020 H0033BGALGRIOOCROD 4’15
retcod isdigit(char); 200000Q00CB000006002003060000000 4‘15
retcod = 15]0“"(char); I EERENENENNEENNNERE LN EENNSNERERRN] 4015
retCOd = 1supper(char); 0000000300000 000000880600000009 4-15
1toa(1nt. decs);0......0‘0’0'.‘.;.....'......'.. 4"”3
retcod = itod(ivar, dvar); cececcecccsssccscacesssces 4=43
FetCOd = 1t°f('Wat‘, f\lal”); 0000009000000 0000080000060 4‘43
itox(int’ hexs); 0RO BOGIBIOOSICOINOBOPISLEIOCOIQRQICORAGEOOSEOROIDS 4‘03
PetCGd = line(fUHCOd Xl’ yl XZ, ,yz). s0eseaseevcoaroce 4"25
WOVQ(pfromg DtO,]en). o.acoooooouoocoooo-..oooco.o.. 4‘14
outport(port va]ue)ﬂ0..0.......'..‘Q..O.."O 4-’35
retcod = pixe](funCOd. Xy ¥). ©0e 00V 0000000000080000 0 4-23
p‘oc(wdress); V8000002000090 02000003200000000¢e08CTOEEO 4-27
retCOd L Me(Quadl“ant); 2000000000030 80600C69008000008 4"27
TQtCOd & DOiﬂt(X, ,Y); 9000000000 0QROSCRGENRIONAESIANARAIN S 4"23
pl"lntf(COntY‘o], al‘gl, al’gz, aao); 9eesc0e0v0000r0ncacee 4‘16

Cr‘et B DlﬂtC(C, fd); 98000000000 0000000000000000C00000 4‘17 '

cret L] putchar(c); 0......0'.00.0..'...........‘_..0.. 4-18
retcod = puts(st‘“ing)’ 000..ﬁ..‘00.....0.00‘...’...0.‘4-19
reset(x’ y). 0.'.D....O..‘.'.000.00......0...‘..Q...' 4-23
ptr L Sbrk("bytes)' [EEEE NN ENENEENNFENNEENERENENERENNNNNNN) 4-2a
set(x’ y) [E R R R ENENNENEREENFEEFE NS EFEYENNNNENENNNENNNENRENNN) 4-23
stmat(dest' source); VOO IV OLCOVDAICIOEDIGIRTOIDNSPOCIDOS 4‘3“
retcod = streuwp(source, dest); ceveessessccccscsccoese 4=30
StrCP.Y(dest source). 200000000009 000000000000000FCSTYS 4'31
retcod = strepl(source, dest, pos, COUNL); coesvccses 4=31
trwt(dest source, l‘epeat). Cveescennovsceess®slnee 4"31
retcod = strfind(dest, SOUrce, POS)i ecccseccesecesece 4=32
stright(dest, source, COUNT); coeccccvcecccssssccscse #=32
strleft(dest, source, COUNt); cevesvccscoscesncsessee 4=32
retcod = strlen(SOUrCe); ceveccossscscssssccssesccsse 4232
retcod = strmid(dest, source, pas, COUNt); cveevocesss 4=32
t1m()p 0B OOVOGCOIIROOOGVHAIBOEPIPIOOINOOIINRIGOPRPOOGOOSOOSIOCOIOONT 4-35
c = to"mr(Char)’ 008926203 00CEIDSRSGOIIBOIOONINOIOIVPISIOENIS 4-21
cs WDDQF‘(Ch&l‘); 00002803000 02PAN0EORI0000000GCCEONTOG 4-21
i"t = xtﬂi(hexs); [(E AR EENE RN N RN N ENE RN RN NN NN NN Y NN NN 4-93

. Lxmfg FU&;&TIONS

-

S

APPENDIX - ERROR MESSAGES

LC ERROR MESSAGES

64> *“already defined" - The object being declared has already been defined
in the module.

65> “argument error® - The expression just processed caused LC to input the
next line before the function call was completely processed. See the “split
function call® error for additional information.

66> “bad label" - The label specified in a “goto" statement was not a valid
LC identifier.

67> “expected comma® - The context of the input required a comma, “but none
was found.

68> “function not declared® - The context of the input demanded that a
function be declared, i.e., the input did not match anything which could be a
compiler directive or a variable declaration, so it was assumed that a
function was being declared.

69> “global symbol table overflow” - LC ran out of global symbol table
space. Either decrease the amount of memory reserved in high memory (see “not
enough memory” error) or split the module being compiled into smaller modules
with fewer external variables.

70> “illegal address* - the "4* (address of) operator was used with an
expression which was not an object in memory. '

71> "illegal argument name* - The' argument name is not a valid LC
identifier.

72> *"illegal identifier® - The input was interpreted as an identifier, but
did not conform to LC's rules for identifiers. ‘

73> ™input file open failure" - An input file could not be opened
successfully.

74> “invalid expression® - The input could not be recognized as an
expression when the context of the program required an expression.

75> “invalid option name® - The name given in a “#option“ compiler directive
was not a valid LC identifier.

76> “"invalid option value" - The value given 1in the “#option*® compiler
directive was not a character literal or numeric constant. :

77> "local symbol table overflow" - LC ran out of local symbol table space.
Either decrease the amount of memory reserved in high memory (see “not enough
memory" error) or decrease the number of local variables in the function.

78> "line too- long" - The inpdt line exceeded the maximum input 1line size
allowed by LC (128 characters/line). .

LC ERROR MESSAGES

g -1

APPENDIX - ERROR MESSAGES

79> "macro table full® - The current “#define® caused the table space
allocated by LC to be exceeded. Either decrease, the amount of memory reserved
in high memory (see “not enough memory" error) or decrease the number of
“gdefine® statements in the module.

89> *“missing ':'" - A "?% operator was found without a matching ":°®
operator, -

81> ‘“missing apostrophe® - A character literal was not ended with én
agostrophe. LC does not allow a character literal to be continued on another
line “ : :

82> *“missing bracket® - The ending "bracket® character shown in the error
message was expected, but was not found. ~y

83> *missing quote® - A string literal did not have an ending quote ('"').
Strings cannot be continued on another line. ’

84> *®missing semicolon® - No semicolon was found at the end of a statement.
The ';* character 1is the statement terminator, and must be placed at the end
of a simple statement.

85> “must be constant® - The size of an array must be a numeric constant.

86> “must be extern® - a function declaration was encountered.past a comma
in an external (but not ®extern®) declaration statement. This context implies

that the function is of storage class, "extern®, but this was not the class
of the declaration statement. ’

87> “must be lvalue® - The expression being processed specifies that a value
be placed into an cbject, but no object which could be stored into was found.

88> “negative size illegal® - An array with a negative.size was declared.
. The array size is made positive before being used.

89> “nested too deep - ignored® - The #include statement would have nested
Eoo deeply, if not ignored. Up to eight (8) nesting levels are available in

98> "no closing brace® - The end of the last 1nbut file was encountered
_without a closing brace for the current function being found.

91> ®no input file* - No input files were specified on the command line
which invoked LC.

92> ®no multiple dimensions® - The array being declared has more than one
dimension, which is not supported. LG supports one-dimensional arrays only.

93> "“no while after do" - A "do* statement was compil b " "
statement followed it. 4 mpiled, but no “"while

94> “not a pointer expression® - the indirection operator, “** was used

with an expression which does not result in the address of an object in
memory. '

<Le ERROR MESSAGES

. =

APPENDIX - ERROR MESSAGES

95> “not enough memory” - When LC began execution, not enough memory was
free for LC -to execute properly. Decrease the amount of modules in high
memory (filters, MINIDOS, KSM, SYSRES'ed overlays, etc.) and try to execute
LC again.

96> '"output file error® - An error occurred while writing to the output
file.

97> “output file open error" - An error occurred when attempting to open the
LC output file. ‘

98> “split 'for'® - The expressions in parentheses in a for statement must
appear on the same line. This is a limitation of the LC implementation} not a
limitation of the C language.-

99> ®“split function call* - All the arguments in a function call must be
given on the same line. This is a limitation of the LC implementation, not a
limitation of the C language.

108> "too indirect" - The expression exceeded the amount of indirection
allowed by the declaration of the objects used in the expression.

11> *"too many active loops® - LC allows nesting of loops and “switch®
statements to 25 levels. The loop or “switch® being processed would have
nested more than 25 levels.

182> “too many arguments® - There were too many arguments specified in a

function call. LC limits the number of arguments in a function call to 16.

{his is a limitation of the LC implementation, not a limitation of the C
anguage.

193> “unmatched arguments® - The argument being declared did not match any of
those in the argument list for the function.

164> “unrecognizable declaration® - The object being declared contains a
character which is invalid in the context of a declaration.

105> "“unrecognizable option* - One of the options specified in the command
line was not a valid LC option.

LE EMWOUR WESSRGES

3

APPENDIX - SAMPLE PROGRAMS

/* CAT/CCC */

/* Utility to concatenate files to standard output */
/* adapted from “The C Programming Language® by */
/* Kernighan and Ritchie. */
#include stdio/csh

FILE *fp;
main(argc,argv)
int argc,*argv(];
{
if (argc == 1) /* no args, copy standard input */
filecopy(stdin);
else
while (--argc)
{ if ((fp = fopen(*++targv,*r")) == NULL) ~y
{ fputs(*argv);
abort(* - open error.");
}
else Ce
{ filecopy(fp);
fclose(fp);
} b R S et e e e
}

}
filecopy(fp) /* copy a file to the standard output */
FILE *fp;

{
- int c¢;
while ((c = getc(fp)) != EOF)
if (¢ !I= putc(c,stdout))
- abort(“Output file write error®);
}
abort(msg)
char *msg;
{
fputs(msg,stderr);
putc(eol,stderr);
exit(l); /* let system know about the error */
}

) CAT/CCC
D-1

APPENDIX - SAHPLE

/* Test of emdi() */
#include stdio/csh
#option INLIB '
char buf[160];
main()
{ puts(®Test of cmdi()\n\n®);
puts(“Enter comnand:*);

" gets(buf);

X cmdi(buf);

. QHQITES£/£QG
g}, LA

PROGRANMS

3

APPENDIX - SAMPLE PROGRAMS

/* Test of cmd() */
#include stdio/csh
#option INLIB
char buf{1041];
main()
{ int rc;
puts(“Test of cmd()\n\n");
puts(*Hit break to exit back to DOS\n");
while (TRUE)
{ puts(“Enter command:“);
if (gets(buf)==NULL)
exit(@);
rc=cmd (buf);

printf(“\nReturn code is %d\n",rc);

CMDTEST/CCC
D -3

¥

PPENDIX - SAMPLE PROGRANS

/* compare/ccc */
#include stdio/csh -
int line, ¢l, ¢2;
FILE *fpl,*fp2;
main (argc,argv)
int argc, *argv;
{- 1if (argc!=s3)
{ puts(“Format error: compare filel file2\n");
exit();

}
line = 1;
fpl = getfile(*++argv);
fp2 = getfile(*++argv);
while ((cl = getc(fpl)) != EOF &
(c2 = getc(fp2)) != EOF)
{ if (cl I= ¢2)
{ printf (*Difference at line %-1¥d\n*, line);
exit();

}
else if (cl == eol) ++line;

}
if (cl ==¢2) ’
puts ("The files are equal\n").

~ else
X puts (®Tne files are not of equal length\n®);
getfile(fname)
char *fname;
(char *fp;

if ((fp=fopen(fnapme,®r*)) == NULL)
{ printf("Open error « %-2fs\n", fname);
exit().

else return fp;

‘ COMPARE/CCC
D=4

vl

APPENDIX -« SAMPLE PROGRAMS

/* decom/ccc */
/* comment stripper program - $#9/14/82 */
/* removes all comments and multiple white spaces */
#define eof -l
#define eol 13
int col, tab, string, comment;
int c;
main() : '
{ col = tab = comment = string = §;
while ((cs=getchar()) != EOF)
{ if (comment)
{ if (cs=eol) tab = comment = string = §;
else continue;
}

else if (c==';')
if (Istring)
~{ comment = 1;
continue;

}
else if (c==e0l)
tab=string=0;
else if (c=='\'")
string = !string;
if (whitespace(c))
{ tab = 1; continue; }
else if (tab)

{ putchar(‘\t'); tab = §; col++; } 7

if (c == eol)
{ if (col == @)

- continue;
?lse col = -1;
) putchar(c); col++;
exit(@);
whitespace(c)
int c;
{
if (c == '\t' | c == ')
return(l);
else
return(@);
}

DECOM/CLC

-5

APPENDIX - SAKPLE "PROGRAMHS

/* Plot Hilbert curves of orders 1 to n */
#include stdio/csh
#option INLIB
int h,X,y,x0,¥0,u,v;
main()
{ 1int i,n, hP;
puts(®\x@f\xlc\x1fhilbert curves\n®);
n=4; hg = 32;
isQ; h=h@; x@=h / 2; yb=xB;
while g 1i<n)

hsh/2;

@ =x0+h/2;, yd=y0+h/2;

X = x@+ 1 % 32; y = y@+l@; usx; v=y;
;*1; p(l,1);

exit(@);
move() u
{ int 1,3;
for (i=min(x,u) ; ¥ < (max (x u)+l) ; i++)
Tor \J~m~u(:.4> s 3 < (marly,v)el} 3 g+b)
pixel(l,1,3);

usx; vsy;
return{d); } -
min(a,b)
int a,b;
{ 1{if (a>b) return(b); else return(a);)}
max(a,b)
int a,b;
{ if (a<b) return(b). else return(a); }
p(typ,1)
int typ, i;
A if (1 <= @) return(@); else
switch {(fyp) {
case 1: p(&,4=1); 2 = xeb; movelds
p(l,i=1); y = y-it; move();
p(l,i=1); x = x+h; move();
: p(2,1=1) ; break; :
case 2: p(3, -1), y = y+h; move();.
p(2,i=1); x = x+h; move();
p(2,i-1); y = y-h; move();
p(l,1=1) ; break;
case 3: p(2,i=1); x = x+h; move();
p(3,1=1); y = y+h; move();
p(3,1=1); x = x<h; move();
p(4,1-1) ; break;
case 4: p(1,1 -1), y = y=h; move();
p(4,i-1); x = x-h; move();
p(4,i=-1); y = y+h, move();
p(3,i-1); break;

return(@);

. HILBERT/CCC
: -8

!

\/

iy

APPENDIX - SAMPLE P ROGRAMS

/* linetest/ccc */
#include stdio/csh
#option INLIB
main()

{

int x1,x2,yl,y2,t,tl; ‘ ,
puts(*\xlc\x1f*); /* clear the screen */
for (xl1=@, yl=@, x23127, t =@ ; t <= 47 ; t++)
{ line(l,xl,y1,x2,t);
line(#,x1,y1,x2,t);

}
for (y2=47,t =127 ; t 5= {§ ; te-)
{ Tline(l,xl,yl,t,y2);
line(@,x1,yl,t,y2);

}
exit(@);

LIKETEST/CLC
.7

APPENDIX - SAKPLE PROGRAMS

/* xfer/ccc */ “ . B
#include stdio/csh /* standard 1/0 definitions */ BN
/* XFER - copy standard input to standard output */ , _‘)
int ¢, bytes, lines;
FILE *fp;
main()
{ .
" bytes = lines = @;
while((c=getchar()) l= EOF)
{ putchar(c);

- ++tbytes;

if (c == EQL) ++lines;

fp = fopen(“*do®, “w");

) fprintf(fp, "&d characters , %d lines™, bytes, lines); “3
N
v
9
L - XFER/CCC

D -8

APPENDIX - SAMPLE PROGRAMS

The following example program may help to illustrate the use of
call(). The program was provided by Rich Deglin.

/* test of syscall() */
#define CKDRV @X44B8 /* Note vectors are Model I */
#define DATE PX447Q ‘
#define DODIR PX4463
#define DSPLY @X4467
#define TIME §X446D
#define AF 0
#define BC 1
#define DE 2
#define HL 3
#define IX 4 ~
#define IY 5
#define CARRY ¢
#option INLIB
int rc,d;
char *regs[61,buf[109];
main()
{ puts("Test of call()\n\n");
for (d=0,d<8;++d)
{ regs(BCl=d;

rc=cal 1(CKDRV,regs);

printf(“Drive ¥d %s¥s\n*,d,rc?“not “:**, “ready");

if (regs[AFJ&(1<<CARRY)) N

puts(“Drive is write protected\n"); }

wait();
dt (DATE,“Date*);
dt(TIME,"Time"*);
regs[HL J="This is a message\n";
call(DSPLY,regs);
wait();
regs[BC]=(4<<8)+§;
regs[HL J=buf;
cali(DODIR,regs);
strmid (buf+8@,buf,0,8);
strmid (buf+9¢,buf,8,8);
printf(“%s %s free: %dK\n\n*,buf+8@,buf+90,buf[18]+(buf[191X<8));
regs[BCl=0;
cal1(DODIR,regs);
wait();
}
wait()
{ puts(“\nHit any key"); getchar(); clscrn(); }
dt(addr,str)
char *addr,*str;
{ regs[HLJ=buf;

call(addr,regs);

*regs[HL 1=0;

printf("%s: %s\n",str,buf);
}
ciscrn()

{ puts("\xld\xlf*); return §;}

SYscarL/ecc
0-8

