
.~.

LL
LL
LL
LL
LL
LLLLLLL
LLLLLLL

ccccccc
ccccccc
cc cc
cc
cc cc
ccccccc

·ccccccc

C-Language Campi ler

Reference Manual

Copyright (C) 1982 by Jim Fri11111el
All rights reserved

Reproduction in any manner, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without written permission, is prohibited.

Published by:
MISOSYS

P. 0. Box 4848
Alexandria, Virginia 22303-0848

* * * N O T I C E * * *
* * * L I M I T E D W A R R A N T Y * * *

MISOSYS shall have no liability or responsibility to the purchaser or
any other person, company, or entity with respect to any liability, loss, or
damage caused or alleged to have been caused by this product, including but
not limited to any interruption of service, loss of bu$iness and anticipatory
profits, or consequential damages resulting from the operation or use of this
program.

i"v

Should this program recording or recording media prove to be defective
in manufactare, 1abeling, or packaging, MISOSYS will replace the program upon
return of the program package to MISOSYS within 90 days of the date of
purchase. Except for this replacement policy, the sale or subsequent use of
tt:1 s p:-ogram material 1s without warranty or 1 i abi 11 ty.

This program package is copyrighted with all rights reserved. The
distribution and sale of this program is intended for the persooal use of the
original purchaser only and for use only on the computer system noted herein.
Furthermore, copying, duplicating, selling, or otherwise distributing this ~
product is expressly forbidden. In accepting this product, the purchaser J
recognizes and acce_pts this agreement. ._,;

ATTENTION·

A limited licensing agreement is available for the generation of
commercial_ products compiled with LC and using the LC run time library.
Contact the publisher for details.

MISOSYS
P.a. Box 4848

Alexandria, Virginia 22303-~848
7(13-96'1-2998

LC is a trademark of MISOSYS.
LOOS is a trademark of Logical Systems, Inc.
TRS-8~ is a trademark of Tandy Corporation.

UNIX is a trademark of Bell Tellephone Laboratories.

•

.)
:_./

\

F O R W A R D

LC is an exciting product for the TRS-8~ series of microcomputers. The
power of the C language is beginning to be realized by many individuals. LC
puts the power of C into your hands. The unique implementation of the LC/EDAS
language development system provides most of the standard C language
capabilities as described by Kernighan and Ritchie in .uThe C Progranming
Language• as well as an extensive macro assembler.

LC has been under development for two years - going through various
transitions of implementation. The product you now own, has many unique
features. It will provide you with extreme fascination of new techniques in
coding. You not only have the opportunity of learning a relatively new
compiled language, but you also have the opportunity to instill -'c.dvanced
programming techniques in.to your programs. You wi 11 get out of LC 111Jch more
than what you give it. If you are new to the C language, take the time to
learn it. You will b~ greatly rewarded.

The tenure of the LC project has been intriguing. That one word
certainly does not sum up the entire history, however. No one word can.
Frustrating, rewarding, despair, hope, and many other words can be added to
the list. During LC's long labor, Jim's wife Sam, had some of her own, giving
birth to a new daughter, Danielle. The encouragement and support that Jim.•s
family provided him shall not go unnoticed - let alone the deep understanding
of all those late hours at the computer.

A specfal thanks goes out to Rich Deglin for his continued support
throughout LC's design and implementation life cycle. Rich is also remembered
for his contributions to the installation library of the string and control
functions and his many suggestions of enhancements to the standard librar-y.
I'd like to upoint• out that Karl Hessinger's plotting functions will be used
by many l.C programmers and will be most appreciated.

To Jim Frinmel goes unending appreciation for a job well done. This
astute mind has formed many of the sophisticated techniques inherent in LC.
It has been my personal pleasure to have worked so closely with Jim over the
long LC development time frame. It will be equally pleasurable to continue
this association. Jim's efforts were sparked by the work done on the SMALL C
compiler by Ron Cain - one who has certainly provided the foundation for a
lot of C work.

Lastly, let me acknowledge the understanding that my wife, Brenda, has
demonstrated. Those long hours spent in putting this reference manual
together were time apart from her. For a newly married couple, it was a noble
sacrifice. It will not be forgotten.

Pub 1 i sher

- i -

\

\

F R O M T H E A U T H O R

The product which you have in your hands, affectionately called 0 Elsie 0
,

has been a labor of love. She has grown with my children, who have shared in
this labor by giving up time with their father. My wife, Sam, has nourished
Elsie with her understanding, kindness and love, and has sacrificed her time
as well. I have long awaited the day when Elsie would be completed, so that I
could share more with them. This family, -whom I love dearly, is my greatest
earthly treasure, beyond price. My Heavenly Father's love and patience, and
the gifts he has blessed me with, are what made it all possible. I pray that
you will share in my blessings in some way, through whatever Elsie brings
your way.

Elsie has grown from a "small seed" of generosity: Ron Cain's -"''5mall-C
compiler. Ron published his compiler and placed it in the public domain for
all to hack, and many have done so. Ron Cain deserves our heartfelt thanks
for stirring up interest in the C language and for getting us started. Elsie
was 0 bootstrapped" using Small-C, and she shows her roots in places. It is my
hope that Elsie will bring the C language to a less experienced audience than
that which the language now appeals to. I am sure there are many who, with
just a little help getting started with C, will become excellent C'ers.

Elsie would not be here if it had not been for Roy Soltoff of MISOSYS.
He has been a generous benefactor and friend, giving of his time, hardware
and software to bring Elsie to you. His artist's eye also gave this manual
the friendly feel and utility that his products are known for. What makes the
Elsie package especially unique is the work that Roy put into the EDAS IV
assembler. This assembler is the best example of 0 user-driven° software that
I know of •. Roy 1 is tens to his users (and responds), and he has gotten quite
an earful from me. Most of all, he has been more patient than I could have
imagined, waiting for my perfectionist dreams to become useful reality. Roy's
bride, Brenda, has displayed this same patience and kindness, with nary a
protest. I'm sure many others are with me when I say, thank you and may God
bless you both.

Elsie has been helped along the way to becoming a product by some good
friends. Karl Hessinger and Rich Deglin were especially generous with their
time and programming skills. Steve Hill and Scott Loomer also helped with
suggestions, advice and feedback. Also, my wife Sam's editorial skills have
resulted in an unusual combination: sound grammar in a technical manual. To
all of you who have helped Elsie along, thank you and may God bless you.

To my new daughter, Danielle Michelle, who, like Elsie, is full of
bright promise and laughter.

September 2~, 1982

- i i -

.
;

i
I

,,

P R E F A C E

Although considerable effort was expended to make the LC reference
manual as complete as possible, this documentation package in no way is to be
considered an instr.uctive guide into the writing of C language source
programs. Chapter two is a good definition of the C language as implemented
in LC. Although some may find that complete enough, one reference text is
available that must be added to your library. 11 The C Progranvning Language",
by Brian W. Kernighan and Dennis M. Ritchie is the "bible" of C and is MUST
reading. It is filled with numerous exalllJles and illustrations of each C
statement and also contains example upon exa111>le of useful functions. If you
are new to assembly language, the preface contained in the EDAS reference
manual should be consulted for additional information.

The advice is to peruse the contents of both thfs LC reference manual
and th,~ EDAS reference manual to familiarize yourself with its information
and content. If you have any questions concerning the LC development system,
feel free to call or write; however, since the results of a C program rely
heavily on exact syntax, if your question concerns any aspect of the C
language, it must be submitted in writing. All transactions need to be
identified with your registration number(s) so be prepared to provide both
your LC and EOAS registration numbers. It would also be helpful to make sure
your questions are not answered in the manual.

Speaking of registrations, MISOSYS would like to provide you with the
best technical support possible. To provide this support, we need to know who
our customers are. So please fill out the registration form packaged with the
diskette and return it to us promptly - postal card postage is sufficient.
The registration nuniler located on the diskette labels ltllst be entered onto
the registration card and should also be entered in the space provided below.
The registration number must be mentioned on all correspondance with us or
when telephoning for service, so don't lose it. ·

Registrations: LC -- EDAS_~--

- jjj -

I

((*****,....***********1ril'*******************1ril'*'lntt(******kk****))
<<************ ***** ***********"***********************>>
<<****** MISOSYS LC - C Language Compiler *****>>
<<****1Hr Copyright 1982, by Jim Fri11111el *****>>
<<*****-kw**>>
<<***>>

Table of Contents

Forward ..
From the Author ••••••••••••••••••••••••••••••••••••••
Preface •••••••••••••••••••••••••••••.••••••••••••••••
Introduction •••

Elsie Files •••••••••••••••••••••••••••••••••••••••
LC Environment ••••••••••••••••••••••••••••••••••••
Standard Input/Output •••••••••••••••••••••••••••••
Standard I/0 Redirection ••••••••••••••••••••••••••
Standard Header Files •••••••••••••••••••••••••••••
Function Libraries ••••••••••••••••••••••••••••••••
Closing Comments ••••••••••••••••••••••••••••••••••

Language Definition ••••••••••••••••••••••••••••••••••
Program Environment Functions •••••••••••••••••••
Statements - Simple & Compound ••••••••••••••••••••
Data Representation - Constants •••••••••••••••••••
Variable Names (Identifiers) ••••••••••••••••••••••
Data Declarations •••••••••••••••••••••••••••••••••
Scope of Variables & Functions ••••••••••••••••••••
Storage Classes •••••••••••••••••••••••••••••••••••

~Expressions •••••••••••••••••••••••••••••••••••••••
Unary Operators •••••••••••••••••••••••••••••••••••

__ Binary Operators ••••••••••••••••••••••••••••••••••
Statements ••

BREAK ••
CONTINUE
DO-WHILE ••••••••••••••••••••••••••••••••••••• ~.
FOR ••••••••••••••••••••••••• • ••••••••••••••••••
GOTO •••
IF
RETURN ••••••••••••••••••••••••••••••••••• 0•••~•
SWITCH-CASE-DEFAULT ••••••••••••••••••••••••••••
WHILE ••••••••••••••••••••••••••••• ~ • • • • • • • • • • • •

LC Operators Guide •••••••••••••••••••••••••••••••••••
LC Operation •••••·••••••6•••··•~•••··••·••00••·•6·
File Specifications •••••••••••••••••••••••••••••••
Compiler Switch Options •••••••••••••••••••••••••••
Creating a CMD File •••••••••••••••••••••••••••••••
Compiler Directives •••••••••••••••••••••••••••••••
A Simple Exercise 4 ••••••••••••••••••••••••••••••••

LC Library •••
Standard Library (LC/LIB) •••••oo••v•••••e•e•••"••'-
Installation Library (IN/LIB) •••••••••••••••••••••

Primitive Plotting Functions •••••••••••••••••••
Advanced Plotting Functions·~··················
Plotting Control Functions •••••••••••••••••••••
String Functions •••••••••••••••••••••••••••••••

Second Edition 1982

i
ii

iii
1-1
1-3
1-5
1-6
1-7
1-8
1-9
1-lli'
2-1
2-1
2-3
2-4
2-6
2-8
2-9
2-1"
2-13
2-17
2-19
2-24
2-28
2-29
2-27
2-27
2-3"
2-25
2-29
2-26
2-27
3-1
3 .. 1
3-2
3-3
3-5
3-7
3-111
4 ... 1
4-2
4-22
4-23
4-25
4-27
4-29

i'v

Control Functions ••••••••••••••••••••••••••••••
Floating Point Library (FP/LIB) •••••••••••••••••••

Single Precision Operations ••••••••••••••••••••
Double Precision Operations ••••••••••••••••••••
Data Conversion ·Functions ••••••••••••••••••••••

Advanced Topics ••••••••••••••••••••••••••••••••••••••
Utilizing Assembly-Time Options •••••••••••••••••••

ARGS ••••••••••••••••••••••••••••••••••• , ••• ~ •••
FIXBUFS ~.~ ••••••••• ~i~~ •• ~ •• ~ •• ~ •••••••••••••••

FPLIB ••••••••••••o••••••••·•·••••••••••••••·•••
KBECHO o••······•Qo••······················••e•• MAXFILES •••••••••••••••••••••••••••••••••••••••
REDIRECT •••••••••••••••••••••••••••••••••••••••
ZVAA •••

Separate Compilation ••••••••••••••••••••••••••••••
Using the -Global Option •••••••••••••••••••••••
Us1ng Extern and Static ••••••••••••••••••••••••.
Assembling Separately Compiled Modules •••••••••

Creating User Libraries •••••••••••••••••••••••••••
In-Line L1brar1es ··•·•·••••··•·••••···•••••••••
PDS Libraries ••••••••••••••••••••••••••••••••••

Assembly Language Output Structure ••••••••••••••••
Program Memory Map •••••••••••••••••••••••••••••
LC f.iacros ••••••• D •••••••••••••••••••••••••• o •••

LC Identifier Output•···•·•··•···•••••••··•••··
Run-Time Subroutines····••••·•••••·····•····•·•

Assembly Language Interfacing •••••••••••••••••••••
Register Usage •••••••••••••••••••••••••••••••••
Argument Passing •••••••••••••••••••••••••••••••
Labels and Constants·•·······•••··•·•••·•••••••

When Things Go Wrong
Compilation Errors •••••••••••••••••••••••••••••
Assembly Errors ••••••••••••••••••••••••••••••••

Appendices •••
Operators •••
Library Functions •••••••••••••••••••••••••••••••••
Compiler Error Messages •••••••••••••••••••••••••••
Sample Programs •••••••••••••••••••••••••••••••••••

Second Edition 1982
•

4-34
4-37
4-4(1
4-42
4-43
5-1
5-l
5-1
5 .. 1
5 .. 1
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-5
5-5
5-6
5-8
5-8
5-9
5-11
5-12
5~13
5-13
5-13
5-14
5-16
5-16
5-17
ABC
A-1
B-1
C-1
0-1

~

L·E TI s MEET EL s IE

Before diving into Elsie, we suggest that you do the following, at a
minimum:

l> Read the entire introduction to get ~n idea of what LC is all about.

2> Make backup copies of the distribution diskettes. Elsie is released
on two distribution diskettes. The diskette labeled "LC", contains the LC
compiler and all support libraries. The second di$kette labeled "EDAS 0

,

contains the macro assembler and editor and various EDAS support utilities.
We suggest that you make one set of archival backups and store them away in a
secure area (safe from dust, dirt, magnetic fields, etc.). Then make a
working backup of the distribution diskettes. The procedures for~~ making
backup copies can be located in the UTILITY section of your LOOS user manual
under "BACKUP•. For your information, LC is distributed on data diskettes.

3> Create an LOOS system diskette with a maximum of free space. If you
are going to BOOT from this diskette, then you will need a configuration that
includes the LOOS keyboard driver at the barest minimum. Also, if you are
using a Model I, use the COO/FLT filter in your configuration to filter ihe
video driver. The filter presents more usable character indications for the
characters, 11

[",
11
\•, "J", , and 11

•
11

• This "working system diskette" can
be created by using the LOOS PURGE utility on a fresh backup of LOOS. You may
remove all files except SYS0-SYS4, SYS6, SYS8, SYS1~-SYS12. Keep any other
file you use frequently (for instance, BACKUP and FORMAT) • .If you are using a
double densi.ty system, follow steps <3A>. If you are using a single density
system, follow steps <3B>.

3A>-A 40-track double dens'lty minimal system diskette per
the above has about 144K free. Copy EDAS/CMD from the
working EDAS diskette. Then copy all of the files from the
working LC backup to this LC system diskette. This should
stil 1 leave some work space. Use a data diskette in your ·
second drive for LC source files and all files output by LC
and EOAS.

38> A 35-track single density minimal system diskette per
the above has about 57K free. Copy EOAS/CMD from the
working EOAS diskette, then copy LC/CMO, LC/JCL, LC/ASM,
LCMACS/ASM, and STOIO/CSH from the working LC backup to the
new system diskette. We'll call this diskette your LC
System diskette. Now remove the LC/CMD, LC/JCL, LC/ASM,
LCMACS/ASM, and STDIO/CSH files from the working LC backup
(the one you just copied FROM - not the system disk that
just received those files). Re-designate this disk your
working LC Data disk. In a two drive system, your work
files (LC source and output files) 'w; 11 need to be stored
on this LC Data disk. Therefore, make a few backups of this
disk to use for various· LC progralll1ling sessions.

4> Notice that LC requires a two drive system. If you have a one-drive
system, you overlooked the machine requirements noted in the LC
advertisements and in the catalog. We would not want any user so frustrated
with trying to utilize the LC compiler system on a single-drive cofll)uter.

1 MTROOUCTIG1'
·1 1

LET'S MEET ELSfE

·------5> If you are really anxious to proceed and create a working C-language)✓
program, turn to the OPERATOR• S GUIDE page 3-1~ and note the "si~ le
exercise". Place the LC system diskette in drive r/J, the LC data diskette in
drive 1, and proceed with the EXERCISE.

6> Read the rest of the LC user• s manua·l. Pay particular attention to
the OPERATOR 1 S GUIDE and the LANGUAGE DEFINITION chapters. Skinming is OK for
technical details, but get a feel for where things can be found in your LC
manual.

7> Have fun with Elsie!

•
INTRODUCTION

l v. 2

'
J

,,

,,
·,

L E T I s M E E T E L s I E

.\ ELSIE FILES
•=•=••==•a=

Elsie comes complete with everything you will need to turn your LC
source programs into executable CMD programs. There are many files on your
distribution diskettes: a compiler, an editor/assembler, utilities,
libraries, and JCL files. Here is a description of some of these> files and
their uses:

LC/CMO

This is the LC language compiler. LC accepts as input, C sourc'e code
files, and outputs an EDAS Version IV compatible assembly source file. In
order to organize files in a structured manner, LC source code files have a
file extension of u1cccu and LC output assembler files have a file extension
of "I ASM 11

•

LC/LIB

This is the standard function library. It is an implementation of the
portable library available under most installations of C coq,ilers. These

~ functions allow programs to be written which will be directly usable under
other C language systems that have the standard library available. The
standard functions perform such tasks as input/output, dynamic memory
allocation,-·standard I/0 redirection, and string handling. The standard
library was designed to be compatible with the standard library under Western
Electric 1 s UNIX operating system.

FP/LIB

This contains the LC floating point function library. LC does not have
floating point variables built into the language itself. However, this
library supplies access to the floating point routines in the TRS-8~ ROM
through functions. Single and Qouble precision arithmetic, as well as
trigonometric and transcendental functions, are included. FP/LIS also
includes functions for converting between ASCII, integer, single and double
precision variables.

IN/LIB

The installation function library is contained in this module. These
functions supply graphics plotting, string manipulation, certain LOOS entry
points, and other TRS-8~ features •

..
lMl'ROOUCllOK

'i "':?

LET 1 S MEET ELSl'E

STOIO/CSH

The standard I/0 header file supplies constants and definitions which

are needed to use the standard I/0 library (LC/LIB).

LC/ASM --·---
This file is the primary assembler source file assembled by EDAS. It

accesses your "main• program and establishes the neccessary interfacing
between your program and the LC runtime modules needed to make a •co~lete"
CMO program. · ·

~

LCMACS/ASM

This file contains the #option defaults and assembly language macros
referred t,'l by the compiler and used by the assembler. This file is always
iutomatica11y accessed by EDAS when &ssembling the LC/ASM file.

COO/FLT
This f11e is a video filter for the Model I machine. It provides a more

reasonable and less confusing display of the characters: c. \, l. •• •.

INTRODUCTION
1 ... 4

L E T • S M E E T E L S I E

-\ LC ENVIRONMENT

\

,_,, I
. ___ /

••••••••••••••

LC was designed to be compatible with C programs written and intended to
run under UNIX. Thus some features of UNIX were incorporated into the design.
These features include standard I/0 devices, standard I/0 redirection, device
independence, conmand line arguments, and dynamic memory allocation.

To make Ca portable language, the interface within a program to the
external world. 1s isolated in a standard library. · A program written in C
using only the standard functions to perform inp~t, output and memory
allocation can be transported in source code form to another sytem,
recompiled, and run with minimal changes. The LC system inc1udes a _ standard
library which is co~atible with programs develop~d ur:d~r tmfx. Thus!)
programs developed under LOOS with LC wi 11 run under UtHX · as \',en. ·rhfi!
reverse is also true, except in cases where features not iq,lemented in LC
are used in the program developed under UNIX.

LOOS runs on a variety of machines, with many varied configurations of
I/0 devices. Any program written for one particular environment running LOOS
can run on any other, provided that the standard library is utilized. The
programmer should bear this in mind when writing programs to avoid
conversions when migration to a new system becomes necessary.

•

L E T • S M E E T E L S f E

STANDARD INPUT/OUTPUT
•••••••••••••••••••••

Any program generated by LC will normally have three files ·automatically
opened when the program begins execution. These files are standard input,
"stdin" (normally the console keyboard); standard output, 11 stdout" (normally
the console display); and standard error, 11 stderr11 (normally the console
display). The program can access these files without opening them by using ·
standard library functions since the LC standard library automatically opens
these standard files. They are alsQ automatically closed when the program is
exited as well. Thus, the· program which uses the standard I/0 files
exclusively can deal w1 th input and output and leave the opening and closing
to the LC standard 11brary.

INTRODUCTION
l - 6

·-

'

L E T I s M E E T E L s I E

STANDARD I/0 REDIRECTION

The standard I/0 files normally operate to and from the user's console.
However, a facility is inherent within the LC standard library to permit you
to "re-direct" any of the standard I/0 devices - thus the term "I/0
redirection ... The user can give a file specification that will be used in
place of the normal specification when a standard file is opened. This is
done on the LOOS co11111and line when the user executes the program.

When the left angle bracket symbol, "<", appears on the comand line,
followed by a file specification, that file specification is used when the
standard input file is opened. Similarly, the right angle bracket ~~ymbol,
">", causes substitution of· the standard output file specification, the 11>>"
causes standard output to be appended to the redirected file/device, and the
number sign symbol, .. , .. , causes substitution of the standard error file
specification. Spaces are NOT permitted between the redirection charac~er and
the file specification.

It may not be immediately obvious how this feature can 'be used. Here is
an ex amp 1 e LC program that illustrates the straightforward: use of standard
I/0 redirection. The following program can be used to copy any file to any
other file (remember that "file" can be any device or LOOS disk file).

/* CLONE - copy standard input to standard output */
#include stdio/ccc
int c;
main ()
{ - while {(c • getchar()) !• EOF) putchar(c); }

The example program simply copies the standard input to the standard
output ·unti 1 end of file is reached. Once this program is compiled and
assembled it can be used to copy any file to any other. For example:

CLONE <CLONE/CCC

will display the file clone/ccc on the system console. The comand:

CLONE >*PR

lets the user type to the system printer. If disk file copying. is needed, the
co11111and:

CLONE <INFILE/ASM:l >OUTFILE/BAK:2

will copy the file uINFILE/ASM:1 11 to the file "OUTFILE/BAK:2 11
• If the user

wishes to have a printed log of any error messages that a program puts out,
use something .like :

LC TESTLIB ttrPR

Any messages that LC outputs to the standar.d error file will be re-directed
_) to the printer device in lieu of the console display •

•

l NTRODUCTlOf~
'I "'/

L E T • S M E E T E L S I E

STANDARD HEADER FILES
•••••••••••••••••••••

Standard header files are files which contain definitions peculiar to a
system. They usually take the form of "#defineu statements and •externu
statements within the header file. In order to use certain. libraries, a
corresponding header file should be included (using the u11ncludeu
statement). The file extension of "CSHu is used for "LC Standard Header•
files.

A program to be compiled and linked with LC should have the file
"STDIO/CSH" included to compile properly. STOIO/CSH also defines various
system dependent parameters, such as end of file (eof) and end of line (eol).
<stdout>, <stdin>. and <stderr> are ad~resses in the standard library whi®
do not need to be defined before use.

The following listing 1s representative of the STDIO/CSH file included
with the LC package. '

/* ELSIE STANDARD l/0 CONSTANTS */
fdef1ne EOF -1
#define eof -1
#define eol 13
#define EOL 13
#define FILE char
#define NULL I
#define TRUE 1
#define FALSE II . .:,/
#define true 1
#define false ,
#define OFF i
#define ON -1

l~TROOUCTION
·1 .. 8

L E T • S M E E T E L S I E

FUNCTION LIBRARIES

Co11111only used LC functions •are collected into FUNCTION LIBRARIES. The
functions in a library can be used by the programmer without the need to
rewrite or recompile the functions needed. Once an LC program has been
compiled, it can then be linked during the assembly phase with the functions
it requires. Only those functions necessary for the execution of the program
are linked to the compiled program.

Certain functions required by many programs are included in a special
library called the STANDARD LIBRARY. The standard library is the common
denominator between all C language installations. Programs written using
functions in the standard library are easily transported to an§w other
computer supporting a C language system with the standard library
implemented. The most important aspect of the standard library is that it
allows the details of each system's pecu'liar operatfog environment to be
hidden from the programmer's view. The standard library provides the
functions for input/output, memory allocation, and character set
manipulat'ions. In addition, a collection of subroutines used by the compiled
C program to perform basic operations is also supplied in the standard
1 ibrary.

Users can also create their own collections of· ofte~-used functions that
can be used in the same manner as the standard library. These USER LIBRARIES
reduce the_ programming time, compilation time, and program complexity
necessary in creating new programs. Functions, once defined, written, ~~d
tested, can be added to the user 1 ibrary and need only be referred to by name
in later programs. The linking process brings the functions into subsequent
programs without the need to recompile. If you want to create and maintain
your own libraries, you will need the Partitioned Data Set (PDS) utility.

Special purpose libraries may also be created for use in particular
types of applications. For instance, the functions specific to the TRS-8~
are provided with your LC package are in the special purpose library, IN/LIB.
This is an example of how the C 1 anguage avoids the trap of non-standard
extensions being included within the language.

l NTRODUCTI ON
1 .. 9

,,
L E T • S M E E T E L S I E

CLOSING COMMENTS
••••••••••••••••

LC encourages the use of structured prograrrming methods. Unless one
uses the "goto• statement heavily, LC practically demands a structured
approach to program construction. This is not to say that writing programs
with LC will automatically make you a good, structured progranwner. This is a
skill that is developed by learning and applying the basics.

Some understanding of structured design concepts is necessary in order
to effectively use LC. Probably the first frustrating thing that novice LC
progranners will encounter, especially if their experience is limited to
BASIC and assemb 1y 1 anguage, is -the discouragement of the use of •goto".
Kernighan and Ritchie, in THE c PBQGBAMMING LANGUAG,~ state that the •go~•
is never necessary, and in practice it is almost always easy to write code
without it. The concept to understand is that the "goto•s• are hidden within
the program statements. LC provides, in a coherent, understandable fonn, the
program constructs that you have been building out of •goto 1 s".

Last but not least, several texts are available that should be part of
your library. The first. THE C PROGRAMMING LANGUAGE by Brian W. Kernighan and
Dennis M. Ritchie (published by Prentice-Hall), is the Bible of the C
language and is a required part of your own library. We will refer to this
book throughout this manual by the abbreviation, "K&R", for Kernighan and
Ritchie. Two other books, ;LEMENTS OF PROGRAMMING STYLE and SOFTWAR TOOLS,
by Brian W. Kernighan and P. J. Plauger (published by Addison-Wesley,
present a good foundation of structured programming concepts. Prentice-Hall
also publishes THE C PUZZL, BOOK by Alan R. Feuer. This book can be used to
test your understanding of the· C language. It has proven itself to be quite
useful 1n testing out the intricacies of the LC compiler.

INTRODUCTION
1 - 10

-·"'\"'

LANG U AG ·f DEFINITION

PROGRAM ENVIRONMENT - Functions
aaaa111aaaa;;:aaaaaaaaaaaaaaaaaaaaa

The C language is, in a word, functional. The basic unit of program
construction when using LC is the function. Every LC ·program is a collection
of f~nctions. Each function is a collection of statements that work together
to achieve (hopefully) a usefuJ, well-defined, purpose.

Each function can have information passed to it when it is invoked
(

0 called"). The elements of information passed to the called function are
denoted as arguments. In LC, arguments are copied onto the stack. The
function can then access and use the •1ocal 0 (known only to the called
function} arguments, leaving the original copy of the arguments un8langed.
Each argument is defined at the start of the function. Functions also return
values to the functions that call them. In. LC this value is always a 16-it
nuni:>er. The' value returned can be coa.,ared to, placed in a variable, etc.
Functions can appear, in an arithmetic expression anywhere that a·constant
can.

Here is an example of a function:

square(num)
int num;

{ return num * num ; }

The function, square(), returns the square of a nuni:>er; in other words,
the argument; 0 num•, is multiplied by itself and the result is returned.
Arguments are listed in parentheses after the name of the function, separated
by co11111as. These arguments must be passed by the calling function in the same
order as they appear in this list.

The BODY of the function is the group of executable statements that are
within the braces .. {" and "}". Actually, the grouping of statements in
between braces denotes a special kind of statement called the COMPOUND
statement. The compound statement is fully explained in the section on LC
language statements.

Every LC program has a special function called "main" which is always
the entry point to the program. When referencing a funct1on within this
narrative, we will put 11

()" after the name to identify it as a function. This
is close to the way it looks in an LC program. The function, main(), calls
other functions, which in turn call .other functions, etc... Thus, each
program is an hierarchical structure of functions, with main() at the top of
the hierarchy.

The LOOS command line which invokes the LC program is passed to the
function main() using two parameters, "argc" and "argv 11

• One LC program can
invoke another program by using the cmd() function. When the cal led program
finishes, a special function, exit(), is used to return a value to the
calling program. Programs can call other programs, passfog any arguments
using 0 argc.. and .. argv". In a way, each program appears as a function to
other LC programs and to LOOS •

. ..
ENVIRONMENT

'Y -· 1

'>,

L A N 6 U A G E D E F I N I T I O N

Please scrutinize the illustration of functions in the following
example:

main()
{ /* The "main" function •••

execution begins here!
*I

say hello();
do work(};
say goodbye();
exit(B); /* a nonnal exit, no error code*/

} /* sorry, we can't "goto" any of the functions below.*/

say hello()
{ -puts(•Hiya!!!"); putchar(eol); }

say_goodbye()
{ puts(•Bye y• al 11 ! ! •); putchar(eol); }

do work() ~
{ - while (not quittina time)

{ attach(nut,bolt);
pass on(widget);

} -
}

•
ENVIRONMENT

2 " 2

L A k b u A G E D E F I N I T I O N

----,_ STATEMENTS - SIMPLE & COMPOUND
••••••••••••••••••••••••••••••

To create an LC function you have to state the action to be taken, using
LC language STATEMENTS in the desired combination. Certain special statements
are built into the language to provide the necessary programing constructs
(sequence, iteration, selection). You may be surprised, at first, by the
limited number of statements built into the C language. The authors of the
language wished to maintain the generality of the progran111ing statements,
forcing any special features to be outside of the progranming language
itself. Other languages often have extensions in the form of statements to
provide specialized features, leading to incompatible versions of the same
language. BASIC is a well-known example of a language extended in far tpo
many different ways. The C language avoids this situation by only prcviding
those statements necessary for structuring the program's logical flow and by
placing all special features into functi~n LIBRARIES. Function libraries are
nothing more than collections of commonly used functions. See the section on
the LC libraries in the INTRODUCTION for more information.

Simple LC statements always end with a semicolon ";", the STATEMENT
TERMINATOR. The LC compiler depends on the semicolon to tell when a simple
statement ends. Any number of_ simple statements may be entered, one after the
other, to form a SEQUENCE of statements that are executed pne at a time,
first to last.

,_ The brace characters, "{• and •>•, are used to enclose a sequence of
statements to form a COMPOUND statement. A coq>ound statement can be used

~ anywhere a simple statement can be used. Thus, the body of a function (that
portion enclosed in braces) is just a special form of co111>ound statement.

For example:

nl • la;

is a simple statement. However, the statement:

{
h • h / 2; x~ •xi+ h / 2; yl,J • yl,J + h / 2;
x • x~ + i * 32; y • yl,J + 1~; u • x; v • y;
++i; p(1, i);
}

is a compound statement •

•
SlAtafliltlS

?. - 3

,,

L A N G U A G E 0 E F I N I T I O N

DATA REPRESENTATION· CONSTANTS
•••••••••••••••••••••••••••••••

Numbers and characters must be entered in your LC program in certain
ways in order for the compiler to understand them properly. A fixed value to
be used io an LC expression is called a CONSTANT. ·

Where just a decimal number is required, you can enter it just as you
write it. A leading zero indicates that the constant is in another base. A
leading zero followed by a string of digits indicates an OCTAL CONSTANT. A
leading zero followed by •x• or •x• indicates that a hexadecimal constant
follows. Thus, the decimal number, 255, can be represented as 0377 or. SxFF,
as desired.

If the variable to be assigned the constant is not big enough to contain
the constant, only the least significant bits (LSB) of the number are stored.
This is. in effect, storing the remainder of dividing the constant by 256 or
65 ,.536, depending on the variable size. No warning is given when this
hat~pens, so the programmer must be sure that the variable can hold the
number.

-CHARACTER CONSTANTS supply a way to specify the code for a character
which does not depend on any particular character set. A character constant
is a list of characters within single quotes (apostrophes). For instance, the
c:haracter constant • A' 1s stored jn the coq,uter as the -nuni>er 65 (in
cliecimal). Again, it is up to the progranmer to assure that the nuni>er of
characters between apostrophes can fit into the variable being assigned. If
more characters are specified than can fit, only the last one or two (as
needed) are used.

When a sequence of characters is· needed, a STRING can be specified by
enclosing the characters between quotes (sometimes called "double" quotes ..
1.e. •This is a string 11

). LC does not place· all of these characters into a
variable but rather the ADDRESS of the first character of the string. Thus,
when the string, 11 testin9, l 2 3", is used 1n an LC program, the characters.
between quotes are stored in memory, and the address of the first •t• 1s used
in the expression where the string was specified. You can say that the nuni>er
generated by LC to represent the string really POINTS to the string. The
subject of POINTER variables, which are handy for mantpulating strings, will
~e discussed later.

There are certain control characters that are needed frequently in
programs, but which differ from machine to machine. These can be represented
in C programs using ESCAPE SEQUENCES, to provide a machine-independent
constant. The backslash character. •\•. 1s called the ESCAPE CHARACTER and
denotes the beginning of an escape sequence. A letter following the escape
character indicates which control code is being specified. Also, certain
characters that would otherwise be difficult to represent in strings and
character constants are generated by following the backslash with the
character. These escape sequences are shown in the following table:

•
~

CONSTANTS
2 .• :;

'
J.-

I
.b

·.,
·' _) ,_,

L A N 6 U A 6 E D E F I N I T I O N

Escape I
Sequence Control Code ASCII code used by LC I
aaaaa:uz:a aa:aa•======= ==•==•aaaa••==•===••• I

j
\n,\N NEWLINE character x1l1D 1 CR I
\t, \T horizontal tab x1119' HT I
\b,\B backspace x'l18' BS I
\r,\R carriage return x '11D' CR I
\f,\F fonn feed x•ac• FF I
\\ backslash x•sc• backslash I ,. single quote x'2C' apostrophe I

'" null X 1(1'1 1 null byte . I
\ II double quote X'22' double quote I ,,..,.,,

I ,.
In addition, any binary code can be represented in a string or character

constant by following the backslash with a numeric constant. This is done by
following the backslash with up to three octal digits. An extension which is
not normally allowed in the C language is offered in the LC language as a
convenience to microcomputer· users who are only familiar with hexadecimal.
The backslash may be followed by an 'x' and one or two hexadecimal digits.
Either. of these two methods result in an 8-bit character constant.

For exaffl'.)le, the character 'A' can be represented as '\x41' using a
hexadecimal escape sequence, or as '\l~l' in an octal constant. Similarly, to
place a carriage return at the end of a line, the following three methods
could be used-:

"An example of a normal escape: \n"
"An example of a hexadecimal escape: \x~D"
"An example of an octal escape: \1115 11

When a character escape sequence is used within a string, the actual
value of the escape sequence is stored in a string (i.e., only one byte of
data per escape). Thus, the string:

11\n\x'1d\f115 11

is only three bytes long in memory once the program is coq,iled and
assembled.

COKSl'MTS
2 - 5

L A N 6 U A 6 E

VARIABLE NAMES
••••••••••••••

The names given to identify variables, functions, macros, and labels are
called "identifiers" and ail follow the same rules as to their format'. LC
identifiers may be of any length (be practical) and must start with an
alphabetic character {'A' through 'Z', •a• through 1 z 1

} with the rest of the
characters· in the name consisting of upper-case or lower-case alphabetic
characters {'A' through •z•, •a• through 'z'}, numeric characters{~ through
9}, or the underline character {}.LC will accept an underline as the first
character of an identifier, however· EOAS will not; therefore, do not start an
identifier with the underline character. ·

LC remembers only the first eight (8) characters of an identifier, so
these first eight must be unique. ~~

Elsie is case-sensitive, i.e., recognizes the difference between
lower-case and upper-case in identifiers. Thus, "EOF", "eof", and "Eof" are
al 1 different identifiers, to Elsie. However, identifiers which 111Jst be
written out in assembler source code for EDAS are converted to upper-case,
since EOAS does not allow lower case assembly language code. A good, simple
rule to follow is to use UPPER-case foJ:.,.macro constants only, and lower-case
for all other identifiers. Since macro identifiers are not written to the
assembly output file, they will not conflict with any other identifiers which
are the same, except for case differences.

• VARIABLES
2 - 6

L A N G U A 6 E D E F I N I T I O N

-"\ DATA DECLARATIONS

········••=••····
LC va~iables must always be declared before use. The standard procedure

is to declare variables at the beginning of_ the program (globals} and at the
begin~ing of each function (locals}.

Character variables are stored in eight bits, or a byte. The
declaration:

char c, string[81J;

establishes a character variable named •c" and a character array named
•string". Arrays of one dimension are allowed. i'v

All other variable types (short, long, int, unsigned), as well as
pointers, are stored in sixteen bits. The short and long declarations are
provided in the interests of portability. The declarations:

int a;
short b;
long c;

short int b2;
long int c2;

are all acceptable declarations, and all result in the same size integer
field. This is acceptable, since the C language does not guarantee that a
"long• will, be longer, or that a •short• will be shorter than integers.
Integers declared 1n this manner are signed, 1.e., their most significant bit
is regarded as a sign bit. Their values can range from -32,768 to 32,767
(decimal}. ~nsigned fields do not have a sign bit. They range from 0 to
65,535 (decimal} and are declared like this:

unsigned u;
unsigned int u2;

Arrays of one dimension are allowed for short, long, int, and unsigned
types.

Pointer variables are different from the types described so far, in that
they normally contain the ADDRESS of a data item. For example,

char *cp;

declares a pointer variable named "cp". The asterisk denotes INDIRECTION,
1.e., that the data item is referred to indirectly through the pointer
variable- "cp•. The address of the data item must be stored in the variable,
"cp", before it is used as a pointer to access a data item. To refer to the
data itself, an asterisk is placed before the name, e.g., *cp denotes the
data item. An example of practical use follows:

DECLARATIONS
2 •. 7

LAN 6 U A 6 E DEF IN I r~I ON

getit{cp)
char *cp;

{ while {(c•getchar()) != eol && c !• EDF)

}

{ *cp • c;
++cp;

}
*cp•NULL;
return c;

The function, getit(), inputs characters continually from the standard
input until end-of-file or end-of-line characters are encountered~ When
getit() is called, the pointer argument, cp, contains the address of a buffer
area. One by one the characters are placed in the buffer, {*cp • c), and the
buffer pointer is incremented (++cp). ~~

Pointers may be declared for any data type. An alternative way of
declaring a pointer is tQ leave out the size in an array declaration. For
example,

int count[];

dtlchres an integer poi-nter, •prime•. There is good reason for this method of
declaring a pointer. Pointers may be INDEXED to get to the "nth 11 item in an
array. Using the example above, count would contain the ad.dress of the
beginning of an array of short integers. •count[iJ• denotes the first
element in the array. and •countC22l• denotes the 23rd element.

No matter how a pointer is declared, either method of using the pointer
may be used as the progranvner sees fit$ Thus, ••count• and •count[iJ• refer
to the same d,rta i tern and may .be used interchangeably in the same program.
Using ••count• is a little more efficient, however.

Pointers may point to other pointers. This bombshell of a statement is
probably too much for you after the last few paragraphs; it must be said,
however. LC allows pointers to have more than one LEVEL OF INDIRECTION. This
can be declared several ways:

shine() ·
{ char *names[J;

char *('A-words);
• • • Q • • • • • • • •

Both of these declarations result in the same effect: a pointer which points
to a pointer which points to a character field.

Pointer variables may have up to 32 levels of indirection. However, the
practical limit is the ability of the programmer to keep track of all this.
In general, two levels of indirection are all most folks can take.

More information and examples can be found in the reference text, •The C
Progranming Language", by Kernighan & Ritchie.

" OECLJ\RATlONS
2 ... a.

-
·\

L A N 6 U A 6 E D E F I N I T I O N

SCOPE OF VARIABLES & FUNCTIONS
••••••••••••••••••••••••••••••

Variables or functions which are declared outside of any function, i.e,
are not parameters to functions or declared with braces, are called
"external". They are external to all functions. ·External variables and
functions can be used from any of the functions within the module being
compiled. Using the "extern" statement, an external variable or function may
even be accessed from another, separately coq>iled, module. Please do not
confuse "extern" and external. External (to all functions) variables and
functions can be declared without the "extern• statement. The •extern"
statement is explained in full detail below. ·

Variables declared within a function are called "local". Functions may
not be defined within another function, as is the case with the Pascal
language. However, a function may be DECLARED •extern" so that it may be
accessed within the currently defined function. Local variables may not be
accessed from any other functions. They only exist for the function in which
they are declared. Even within the function, a local variable can only be
accessed in the block in which it is declared. Remember, a block is a section
of code contained within a matching pair of braces.

Local variables can have the same name as external variables, or local
variables declared in different blocks. If a local variable has the same name
as an external variable then the local variable is the one accessed when used
within the local block. In the following example:

int same;
--funk(same)

{ return same;
hunk()
{ if

{
(block 1)

int same;

} /* return local copy*/

/* some code could go here */

}

}
else
{ char same;

/* some other code here*/
}

every declaration of "same" was a unique variable. Although legal, the
declaration of local variables with the same name within the same function is
not reconmended. This type of trickery, as shown in hunk(), needlessly causes
confusion and is easily avoided •

•

SCOPE

L A N 6 U A G E D "E F I N I T i O N

STORAGE CLASSES ~7'

Variables and functions may be declared as being in certain classes.
These classes specify where variables are to be stored. The classes available
in LC are: auto, static, extern, and register. The storage class of an object
is specifi~d by placing the class name in front of the normal declaration:

auto char c;
static int aiC29];

STORAGE CLASS - AUTO

--······------------
Variables which are declared •auto• are stored on the stack. This is tft~

default for variables declared within a function, so the declaration may
therefore be omitted. Local variables which are •auto• are created afresh
each ti~ the function in which they are declared is called. This allows
functions to be reentrant and recursive. Functions may not be declared with
class •auto• since a function must be declared outside of any other function.
As K&R say, the C compiler is incapable of cofl1)iling code onto the stack!

The scope of an auto variable is the block (within braces) in which it
is declared. All other portions of the code being compiled are oblivious to
the existence of the auto variable, and in fact there may··- exist other
variables with the same name.

The auto class is illegal for functions and other external' definitions
(any variables declared outside of a func~ion).

STORAGE CLASS· REGISTER

Variables declared in the register class are regarded as auto variables

by LC, since the z ... sr, has no extra registers avai 1 ab le for use as reghter
variables. Register variables are stored on the stack in the same manner and
are also illegal outside of a function. ·

The scope of register variables is the same as that for auto variables.

STORAGE CLASS· EXTERN

The •extern• storage class allows an external variable declared in one
module to be accessed from another module. A •roodule• 1s what is processed by
one execution.of LC, 1.e., one set of C source input. Let's say that the
following declaration:

1nt choice;

exists in module 1. If module 2 functions need to access this same variable,
the declaration:

extern int choice;

STORA&E CLASS
2 - li

-·-----..
j

._/

L A N 6 U A 6 E D E F I N I T I O N

would allow the access needed. LC will not reserve any storage for "choice"
in module 2, since the storage class, "extern", tells LC that storage has
been reserved in another module.

T.he programmer MUST ensure that the declarations are compatible between
modules. In other words, all "extern" declarations must match the external
declaration (declaration without "extern") by having the same type, size, and
amount of indirection. Otherwise, LC may access the variable in incorrect
ways,.

The extern statement may also be used to declare what a function returns
before it is defined tn the program. This •forward" declaration a~lows a
function which returns something other than a signed integer to be defined
after it is used. If the forward declaration is not given anq a function is
as-yet-undefined, the compiler assumes that the function returns a signed
integer.

STORAGE CLASS - STATIC

Static objects are stored in declared, fixed memory space. Their
behavior is the same as that of external variables; their scope is more
limited, however. Static variables declared outside of a function can only be
accessed by functions within the module being compiled. Other (separately

" compiled) modules cannot get to them by declaring them "extern". Static
variables declared outside of all functions are accessible to all functions

.. ...;;,, within the module. Static variables declared within a function are similar in
scope to auto" and register variables. They can only be accessed in the block
in which they are declared. Thus, two static variables with the same name may
be declared in different functions.

Functions may also be defined as "static", making them only accessible
from within the current module. However, since LC is a one-pass compiler, the
definition of a static function must precede any reference to the static
function. This is because the compiler assumes that an as-yet-undefined
function is an external function.

STORAGE CLASS - DEFAULTS

When a variable is declared by only stating the storage class:

auto xl; register x2;
extern x3; static x3;

the variable type is assumed to be "int". This is a perfectly acceptable
shorthand way to make integer declarations.

When the declaration of a local (declared within a function) variable
has no storage class, LC assumes that the variable is an auto variable. A
function declared within another function body is ·assumed to have a storage
class of external. The compiler regards the declaration as if an "extern"
statement preceded it.

STORAGE CLASS
.., 1 1

LAN6UA6E DEFINITfON

External declarations ~hich do not have a storage class declared are
special entities. They belong to the implicit class, "external•, and may be
referenced from other (separately compiled) modules which declare the
variable as "extern 11

•

• stoRAGE Cl.ASS
2 .,, 12

L A N 6 U A G E D E F I N I T I O N

~ EXPRESSIONS
••••••••aaa

One of the most powerful features of the C language is its expression
capabilities. The amount of work that can be done by one expression is
sometimes mind-boggling. A quick example:

(end_of_file • (c•getc(file))••EOF))? fclose(f11e) : ++count•

This convoluted statement will get a character from a file and place 1t
1n the variable, 11c•. The character is compared to the value •eof• which
indicates end of file; the result, true or false, is placed in the variable,
•end_of_fileH. Finally, if it was the end of the file, the file is ,.. __ closed.
Otherwise, a counter variable, HcountH, is incremented to provide a cdunt of
the characters read. ·

The example was a bit exaggerated, and expressions this coq>lex can be
quite hard to understand. Two statements must be made about the coq>lexity of
expressions in the C language •

•
The progra1t111er who does not fully know and use C's

expression capabilities is seriously handicapped, unable to
use the full power of the C language.

:::--- On the other hand, a quotation from THE ELEMENTS OF PROGRAMMING STYLE by
Kernighan and Plaugher is appropriate:

- 11 Everyone knows that debugging is twice as hard as
writing a program in the first place. So if you're as
clever as you can be when you write it, how will you ever
debug it?"

The word "maintain• could be substituted for "debug" in the quote above,
and it would still be valid. You must be able to understand later what you
wrote into your program. If others are going to have to maintain your
program, the principle of KISS (Keep It Simple, Stupid) should prevail. This
is not intended to discourage the use of complex expressions. Just keep in
mind that the more operators involved in an expression, the more difficult it
is to properly place parentheses and keep the precedence of operators
straight. -

There are two kinds of expressions in many coq>uter languages: logical
expressions and ·arithmetic expressions. Logical expressions are usually for
comparing things and for making choices. The result of a logical expression
is either true or false. Arithmetic expressions result. in a nunt>er. Usually
an assignmen.t to a variable is made to save the result of the arithmetic
expression, or it is passed as an argument. In many language implementations,
only one type of expression may be used in certain contexts. For instance,
the BASIC program statement:

1eee A• cc<• s >

attempts to assign to A the result of the comparison C to 8. This is not

EXPRESS!OKS
~: .• 1 ~;

L A N 6 U A G E D E F I N I T I O N

allowed in many implementations because they are expecting an arithmetic .-...
assignment. Even if some BASIC's allow it, it is best not to do this type of
assignment, in order to keep programs relatively portable.)·

Another situation is shown in PASCAL:

If A:• CB< C) THEN BEGIN

where the PASCAL compiler expects a boolean expression between IF and THEN.
Even if A is a boolean variable this assignment is not allowed in most PASCAL
compilers. This is not intended to denegrate PASCAL. There are good reasons
why the authors of PASCAL did things this way. However, the C language does
not draw distinctions between types of expressions within the context of the
program. The distinctions are made in the types of operators instead.

PRIMARY EXPRESSIONS

The elements which are manipulated by operators in an expression are
called primary expressions. The basic elements which make up a primary
expression are identifiers, constants, and strings. Identifiers are the names
of ~ariibles ~,d functions. Function w1d irray identifiers effectively
resolve to the address of the function or array, while all other variable
identifiers resolve to the contents of the variable. Constants are character
or numeric (decimal, hex, octal) values. Strings resolve to the address of
the first character of the string. --

The operators which LC provides for stating primary expressions group
left to right. This means that the left-most operator 1s interpreted first.
The three primary operators supplied by LC are: isolating parentheses,
subscr;pting 1 and function invocation.

(expression)/* isolating parentheses*/ .
pr1m~ry_expression [expression]/* subscripting*/
pr11141"Y expression (expression 11st) /* function invocation*/ -,

ISOLATING PARENTHESES

When the order in which an expression is to be evaluated conflicts with

the precedence of operators, the isolating parentheses provide a way around
the conflict. The expression within parentheses is evaluated first, before
the result of the enclosed expression is used in any expression outside the
parenthesese for exmnple, when ~~edictiny the percentage of up~t1me for MY
equipment, tbe;: f'oHowing t'ormuh. is Li:sed~

MTBF
availability• ------------­MTBF + MTTR

MTBF •meantime between failures
MTTR • mean time to repair

When writing this formula into a C expression a conflict occurs because the

• EXPRESSIONS
2 - 14

L A N 6 U A G E D E F I N ,l T I 0.: N

·~ division operator takes preced~nce over the addition operator. If the
expression is written like this:

up_time • mtbf / mtbf + mttr

the result will always be mttr plus one. This is because the division is done
before the addition. To avoid this, the expression can be stated as follows:

up time• mtbf / (mtbf + mttr) -
to achieve the correct result.

Parentheses can be used on either side of an assignment operator. At the
risk of· confusing the reader with as-yet undefined operators, we nevertheless
provide an exaJll)le using pointers. In certain cases during the use of pointer
arrays, indirection must be performed before subscripting into the data item.
Since subscripting takes precedence over indirection, this kind of expression
must be written as follows:

example(arg)

SUBSCRIPTING
-------~--------

char *arg[J; /* pointer to a char pointer array*/
{

}

/* wrong way - accesses third pointer*/
/* instead of third character.*/

*arg(3J • {I ;

/* right way - zero's the third character of*/
/* first string */

(*arg)(3J a 0 ;

Subscripting is denoted by a subscript in brackets following a primary
expression:

pr1mar1 expression (subscript] -
If the primary expression is an array name, or a pointer to an array, the
subscripted expression returns the element denoted by the value of the
subscript. C arrays are subscripted from zero, i.e, the first element in an
array is nuni:>ered zero.

Function identifiers may not be subscripted. A primary expression
denoting an array of pointers to functions may be subscripted. The primary
expression must indicate the size of the object being subscripted (char, int,
pointer) or the subscript wi 11 produce an -error message. For example:

X • 25[3];

is invalid.

EXPRESSIONS
2 - 15

,,
L A N 6 U A 6 E O E F I N I T I O N

FUNCTION INVOCATION

---~·······~·------
A primary expression followed by parentheses will cause the function

denoted by the primary expression to be called. Arguments may be passed to
the invoked function by placing them in the parentheses, separated by
co11111a 1 s. LC is very liberal about the primary expression. ANY valid primary
expression can be invoked as a function, regardless of the type of the
primary expression. Thus, it is perfectly acceptable to write:

.
(fjxfli6fil) 0 ;

to call the function at hex location 0~6~ (This would call the @PAUSE routi~
in the TRS-8~ ROM).

Any number of arguments can be passed to the called function. Care must
be taken that the number of arguments passed is the number that the function
expects. Otherwise unpredictable behavior may result (certainly not correct
behavior). If a variable number of parameters must be passed, then a control
indicator must be passed to tell the called function how m~ny arguments there
are (for example, the fprintf() and printf() functions in the standard
library). All arguments listed in a function invocation must appear on the
same line in the LC source file. This is not a limitation in-.,osed by the C
language, but by the LC i111>lementation. Arguments can be --any valid LC
expression, including other function calls. The arguments are evaluated from
right to left, 1oe$. the right-most expression is evaluated first. The
progranmer should not rely on this order of evaluation since some other
implementations of the C language evll.luate them left to right. Statements
1 ike this one:

funk(arg++. arg2[argJ);

w;11 cause different elements of arg2 to be passed to funk() when different C
compilers are used. Stay away from this sort of trickery if you can.

UNSUPPORTED PRIMARY EXPRESSIONS

The primary operators, •.•and•->•, which are used with structures and
unions are not supported (structures and unions are not supported either).

EXPRESSIONS

_,,

-

L A N 6 U A 6 E D E F I N I T I O N

.. \ UNARY OPERATORS

······••=••····
Unary operators operate on one object (hence the name). If more than one

unary operator operates on the same object, the operators are evaluated right
to left. The unary operators supplied by LC are:

••
OPERATOR OBJECT

*

!

++

expression

lvalue

expression

expression

expression

lvalue

lvalue

DESCRIPTION

indirection,
means "object at ••• u

pointer,
means •address of ••• •

negates the expression,
"minus expression"

logical complement,
"not expression"

one's co111>lement
of expression

increment and save
in lvalue

decrement and save
in lvalue

····~··· ' .
All unary operators must appear before (prefix) the ci>ject, except the

increment and decrement operators. The •++" and •--• may appear after
(postfix) the object also. The term u1value" means an expression which
evaluates to the address of a data element or pointer field. Constants,
function identifiers, and array names are not lvalues. The term derives from
the observation that n1values" are the only expressions allowed on the left
side of an assignment expression •

•••

The indirection operator can only operate on a pointer expression. Its
meaning is effectively nobject at ••• 0 The address contained in the pointer
is the address of the object referred to by this type of expression. For
example,

see_pointer (pointer)
char *pointer; /* a character pointer*/
{

}

/* first print the address passed in pointer*/
printf("address is: %d ",pointer);
/* now print the data at that address*/
printf(0 data is: %d ", *pointer);

will print both the address (contents of the pointer variable) and the data
at that address (result of the indirect expression).

·UNARY OPERATORS
? .. 17

L A N G U A G E 0 E F I N I T I O N

.,.
This unary operator effectively means 11 a.ddress of ••• " or "pointer

to ••• ". It evaluates to the address of the lvalue it precedes •

. -·
When the unary negation operator precedes cm expression, the result is

the two 1 s complement negative of the value of the expressio~~ When the•-•
precedes an unsigned or pointer expression, the one•s complement of the value
is taken. Since all expressions in LC are evaluated using 16-bit arithmetic,
the expression is negated for the full 16 bits. ~i

I t I

The unary logical complement operator, or 11 not• operator evaluates to
false if the expression is true and to true. if the expression is false. False
is defined as 0 and a~y non-zero value is considered to be trueo Ho~ever. all
LC operators which result in true or false use one Cl) as the value for true.
Thus, the least significant bit of the result indicates true or false •

. -·
."

The one's complement operator inverts every bit in the expression. No 1
regard is given to the type of the expression.

The increment and decrement operators may be used either before (prefix)
the operand or after (postfix) the operand. The operand must be an lvalue or
lvalue expression. In either case the contents of the lvalue is incremented
or decremented and stored back into the lvalue. The difference between prefix
and postfix is whether the result of the expression is incremented or not*
Prefix means that the value after the increment or decrement is the result of
the expression. Postfix means that the value returned by the expression is
the value before the increment or decrement.

UNSUPPORTED UkAAY OPERATORS
---~----------~---~--------

The •(type_name)• and 11 sizeof• operators are not iq,lemented in LC.

,~.~ Qefg.A,"'[QBS
'.) - ·1.a

L A N 6 U A 6 E D E F I N I T I O N

BINARY OPERATORS

Binary operators act upon two expressions together. The type of the
result depends on the type of the two expressions. If the type of any of the
expressions is "char•, "short•, or "long", it is treated as an integer. If
one expression is unsigned, the other expression is treated as unsigned as
well, and the result 1s unsigned. If one expression only is a pointer, the
result of the expression is a pointer of the same type. If both expressions
are pointers, the result is unsigned.

When several binary expressions are concatenated together (without
isolating p-arentheses) the order in which the binary expressio9s are
evaluated depends on the precedence of the operators in the expression. In
the expression,

a+ b * c

the evaluation of "b * c" precedes the evaluation of the addition, since
multiplication has a higher precedence than addition. The expression is
evaluated like this:

a+ (b * c)

As previously described, isolating parentheses can be used to change the
~ order of evaluation. To have the addition performed first, the expression can

be written:

_J

(i +-b) * c

Each class of operands is described below in order from the highest
precedence to the lowest. Note that when all the operators in a complex
expression have the same level of precedence they are evaluated in a certain
order; right to left or left to right. It can be said that a class of
operators "group" left to, right, or right to left. If the order of evaluation
between like operators does not matter, the operator is said to be
associative. Here is an example of how the order of evaluation affects an
expression:

a/b/c/d

This expression is evaluated a follows:

(((a/ b) / c) / d)

Thus, the division operator is said to group "left to right".

BINARY OPERATORS
? - 19

L A N G U A G E D E F I N I T I O N

•••
PRECEDENCE OF BINARY OPERATORS

(Highest to lowest)

MULTIPLICATIVE OPERATORS
expression* expression
expression/ expression
expression% expression

- group left to right
multiplication
division
modulus (remainder)

- - -- - - - - - - -- - - - - - - - - - - - - - - -
ADDITIVE OPERATORS
expression+ expression
expression - expression
- - -- - - - -- -- -
SHIFT OPERATORS
expression<< expression
expression>> expression

- group left to right
addition
subtraction

- - - - - - - - - - - - --
- group left to right

shift left
shift right - - - - - - - - - - ---- - - - - - - - - - - - - -

RELATIONAL OPERATORS
expression< expression
expression> expression
expression<• expression
expression>• expression - - - - - - - - - - - - - - -
EQUALITY OPERATORS
expression•• expression
expression!• expression

- group left to right
less than
greater than
less than or equal to

greater than or equal to - - - - - - - - - - - - - -
- group left to right

equal to
not equal to - - - - - - - - - - --- ---- --- -- -- -·- - - -BITWISE ANO OPERATOR

expression & expression
- assoc1 ative

bitwise and - - ---- - - - - - -- - --- -- - - -- - - - - - -
BITWISE EXCLUSIVE OR OPERATOR - associative
expression· expression bitwise exclusive or
~ -
BITWISE INCLUSIVE OR OPERATOR· associative
expression I expression bitwise inclusive or - - - -- - - - - - ---
LOGICAL AND OPERATOR
expression && expression

- - - - - - - - -- - --~
• groups left to right

logical and
. - ~ -- -- -- - -- --- - - - -- - -- - . - - - -
LOGICAL OR OPERATOR
expression I I expression - --- - -- - - - - -- .

- groups· left to right
logical or

- - - - ~ - - - - - - - - --
CONDITIONAL OPERATOR - groups right to left
expression? expression: expression - - - - - - - -- - - - - - - - - ~ - - - - - -- . - - -
ASSIGNME.NT OPERATORS .. group right to left
lvalue • expression simple assignment
lvalue <op>• expression compound assignment

(<op> is any binary operator except logical,
relational, or conditional operators)

•••

. .. BINARY OPERATORS

--

/

L A N G U A 6 E O E F I N I T I O N

'*'• •1•. •s•
------'!!"------

The multiplicative operators take precedence over all other binary
operators and group left to right. When the result of multiplication
over.flows 16 bits, the left-most (high-order) bits are truncated. Since
integer division is used, the fractional portion of the result is lost. The
result of division is always truncated toward zero. The modulus operator
returns the value of the remainder in the integer division of the two
expressions.

·+· .. -· ---------
The additiv, operators result in the addition or subtraction of the two

expressions. In subtraction, unsigned subtraction only takes place when both
expressions are unsigned. If one of the expressions is a pointer ·and the
other is not, the other value is adjusted to reflect the size of the object
pointed to. Thus, if 0 p0 is a pointer, "p + 3" returns the address of the
fourth object pointed to by 0 p0

• If p points to integers, then LC
automatically doubles the offset to account for the two-byte elements.

'<<', '>>·
--·--------

·~ The shift operators shift the left-hand expression by the nuni>er of bits
indicated in the right-hand expression. Zeroes are shifted in to replace the

-=· bits shifted out. If the right-hand expression is negative or zero, no
shifting takes place. If the right-hand expression is 16 or more, the result
is a 1 ways zero.

Relational operators result in a true Cl) or false (0) value, depending

on the indicated condition.

•-• t I 1••

The equality operators, •equal• and •not equal•, respectively also
return true Cl) or false (0) depending on the two expressions' equality. I,.

The bitwise AND operator does a bitwise AND with the two expressions.
Each bit position in the result will be set to be one if and only if both
corresponding bits in the expressions are equal to one. This is useful for
isolating individual bits within a word by using a 0 mask" as one of the
expressions. Any bit in the mask which is set to zero will cause that bit in
the result to be zero. Any bit set to one will cause the bit in the other

. __ _) expression to remain the same •

•

BINARY OPERATORS
? . ., 21

L A N G U A G E O E F I N I rx 0 N

..... -
The bitwise exclusive OR operator. Each bit in the result of an

exclusive OR is set only if the corresponding bits in the expressions are
opposite. ioe., l and~. or 0 and 1. If they are the same, that bit in the
result wi.11 be zero. This can be used to complement bits, using a .. mask ..
expression. Any bit which is l in the mask will cause the corresponding bit
of the other expression to be complemented in the result. Any mask bit which
is Swill pass the corresponding bit unchanged into the result. ·

• I •

.,.._
The bitwise inclusive OR operator. Each bit in the result will be set to

l if either of the corresponding bits in the expressions are equal to 1. This
can be used to set any particular bit in an expression to one by using a
"mask" expression. If a bit in the mask is equal to 1, then the corresponding
bit in the result will be set to 1. If a bit in the mask is equal toe, then
that bit in the result will be the same as in the expression being
manipu 1 ated.

The logical ANO operator results in a true (one) or·-false (zero)
condition, depending on the relationship of the two expressions. The result
is true only if both expressions are true (non-zero). Moreover, if the first
expression is false. the second is never evaluated.

• 11 '
The logical OR operator returns a true (1) result if either of the

expressions is tru1 (nonez@ro)e If the first expression is true, tht second
expression is not evaluated.

The conditional operator gives the C expression repertoire the
equivalent of an if-then-else construct. It can technically be classified as
a binary operator since only one of the last two expressions is evaluated.
The first expression is evaluated as true (non-zero) or false (zero). Then,
if the first expression was true (non-zero), th~ second expression is
evJluated as the result of the express1on. Otherwise, if the first expression
was false (zero), the third expression 1s evaluated for the result. The
conditional operator groups right to left:

a ? b : C ? d ~ e : f : g

is evahHated in the following IJJjnner:

1 ? b : -Cc_? {d 1 e : f) : g)

BINARY OPERATORS
2 ,m 22

'

.J
_ __,,

__ __,/

L A N G U A 6 E O E F I N I T I O N

• Either or both of the second and third expressions can contain conditional
expressions.

••• '+-' •-•• • ._. •J•• •••• '<<•' '>>•' ••-•• •·•• 'I•' • • • • • • • • , m • •

--~----------
The assignment operators place the result of the right-hand expression

into the object denoted by the left-hand expression, after performing the
indicated operation with the contents of the lvalue when an assignment
operator other than ••• is used. The simple assignment, •••, places the
result of the right-hand expression unchanged into the object denoted by the
left-hand expression. The compound assignment operators have the form:

expression 1 <op>• expression 2 - -
and 1s evaluated like this expression:

express1on_l • express1on_l <op> express1on_2

l'he first form is more efficient since expression_! only need be evaluated
once.

•

L A N G U A 6 E 0 E F I N I T l O N

LC STATEMENTS
•••••••••••••

LC statements are used to specify the action to be taken by the program.
The statements given in the program are executed one after the other. Certain
statements (eonditional and looping statements) will direct the order of and
conditions for execution of other statements. Some definitions of statements
in the following text require .that a substatement be included in the
statement. Any place where a substatement 1s required there may be one simple
·statement or more than one statement cont>ined in a coq,ound statement.

SIMPLE STATEMENTS

,..~
Simple statements are of three types: expression, declarative, and

control. The declarative statements are described fully in the previous
sections on functions and variables. The type, size and scope of functions
and variables are declared in declarative statements.

A simple statement always ends with a semicolon. The semicolon is the
STATEMENT TERMINATOR. It is not a statement separator as in the PASCAL
language. It is a1.ays required at the er.d of a simple statement.

COMPOUND STATEMENTS

-------------··----
The left and right brace characters, •<•and•>•. are used to indicate

the beginning and end (respectively) of a compound statement. A compound
statement, also called a block, can be used anywhere that a simple statement
may be used. Thus, wherever LC's syntax requires a statement, more than one
statement may be given by enclosing them in braces. Within the compound
statement there may be any coRi>ination of simple and coq:,ound statements.

The coq:,ound statement has the fonnat:

{ <declarations> <statements> }

No declarations or statements are required, although the use for an
empty block would be as a null statement of sorts. The declarations should
appear before any statements. Any of the statements may in turn be another
compound statement. No semicolon is required after the coq:,ound statement.

The only place where a compound statement is required instead of a
simple statement is in the body of the switch-case statement. The body of a
function is one compound statement. Her~ are some examples of compound
statements:

func()
{ /* the body compound statement*/

a•b; /* simple statement*/
if {a>c)
{ /* another compound statement*/

c•a;
b•a;

STATEMENTS
2 •. 24

L A N 6 U A 6 E D E F I N I T I O N

} · /* end of compound statement*/
return a+b+c;

} /* end of function body compound statement*/

NULL STATEMENT

A null statement is a sort of place-holder. LC requires that a statement
be given in certain places. If no action is needed in the place required then
the null statement can be used. No action is taken by the null statement.

The null statement is simply a statement terminator (semicolon) by
itself, with no preceding statement. ~1

nu 11 ()
{ /*do-nothing.function*/

; /* a null statement*/
}

EXPRESSION STATEMENT
-~------------------

An LC expression followed by a semicolon is called an expression
statement. The expression is performed when ·it is encountered. LC will allow
an expression that has no assignment in an expression statement, even if it

"' does nothing. Expression statement$ are used to assign values to or modify
values of variables, or to invoke functions. Some sa.R1)1e uses of expression

> statements: ·

retcode • call function() ; /* call a function*/
a• b • c • ~; /* make a, b, c equal to j */
++counter; /* increment a counter*/

IF STATEMENT
---------.. --

if (expression) statement

1f (expression) statement
else statement

The •if" statement gives the progranmer the capability to decide whether
a statement will be executed. The criterion for the decision is the result of
evaluating the expression. The expression may be any valid LC expression. If
the expression evaluates to true (non-zero), then the statement is executed.
If the expression evaluates to false (zero), then the statement following the
"el~e" (if any) is executed.

"If" statements may be nested, i.e., the statement within an "if"
statement may be another "if" statement. Too much nesting of "if" statements
can be hard to follow, so moderation is advised.

STAT'EMENTS

,.

L A N G U A G E D E F I N I T I O N

Some examples of •if• statements:

if (X (i) X • •X; /* absolute value of x */

if (1<•0) {
else --i;

i•x; b•a; } /* compound statement*/
/* and an else clause*/

/* nested if statements*/
if (past twelve)

{if-(before six) say("good afternoon•);
else say(•good evening•);}

else say("good morning•);

SWITCH-CASE STATEMENT ~1

--~----·-------~--~--
switch (expression) { <switch_stateli'llent> ••• }

switch stateaent • statement - . case constant expression:
default : -

The switch-case statement allows program execution within the
<switch statement> to be determined by the case and default prefixes. The
expressTon in the switch statement is evaluated first, then, jf any of the
c.onstant expressions match the result, execution begins iirmedi ately past that
case prefix. If none of the cases match the result and there is a default
prefix, then execution begins at the default prefix. Otherwise, when no
matching case is found, no statements in the switch_statement are executed.

The switch-case statement MUST have a compound statement as its
substatement. This is the only case where this is true. The default and case
statements may occur in any order within the body of the switch-case.
However, A CASE OR DEFAULT MUST PRECEDE THE FIRST STATEMENT in the
switch-case. If this is not done, none of the cases will ever be executed (LC
limitation). [LC l.{l)a requires that the "default" must be the last prefix in
the switch-case-default construct.J

The break statement is used to exit the switch statement. -
switch (ioonth)
{ case January: case october: case december: case July:

case may:

}

case august: case march:
days• 31; break;

case september: case april:
days• 3~; break;

case february:
{ if (leap_,Year) days• 29;

else days• 28;
break;

}

case june: case november:

default: days• {a; error• true;

fll''t'll'.'iffl"~W~.
,W,;;.~,4J;,~~~~

2 - 26

L A N 6 U A G E D E F I N I T I O N

WHILE STATEMENT

while (expression) statement;

.The most basic fonn of looping is provided in LC by the "while•
statement. Simply stated, while the expression results in a true (non-zero)
value, •statement" (also called substatement) is executed. The expression is
evaluated before each time the substatement is executed. Therefore, the
substatement may be executed from zero to any nuni:>er of times depending on
the express ion.

If more than one simple statenent 111.1st be placed in the loop
substatement, then the substatement must be a compound statement. Ttfe break
statement can· be, used to exit the loop from within the statement. The
continue statement can be used to continue directly on to evaluate the
expression, skipping, the rest of the substatement, from anywhere within the
statement.

while (driving) watch(the_road);

while (jogging)
{ take(a step);

breathe();

}
if (too_tired)

~~ 00 STATEMENT _______ _, -

break;

do statement while (expression) ;

0 Do" differs in only one way from the while statement - the expression
is evaluated after the statement is executed. Therefore the substatement will
always be executed at least once. The substatement will be repeatedly
executed until the expression evaluates to false (non-zero).

do anything();
while (there_is_still_time) ;

/* shuffle routine */
do
{

'}

cut the cards();
shuffle();

while (! ready_to_deal) ;

STATE.MEMTS
? .. ?7

l A N 6 U A G E D E F I N I T l O N

FOR STATEMENT __ ., __________ _

for (expr_l ; expr_2: expr_l) statement

The for statement is a looping statement which provides a convenient
place for .initializing, testing, and incrementing loop control variables. The
format shown above can be rewritten using the while statement:

ex.pr l;
while C expr 2)
{ statement

expr_3 .•
"?

}

Expr 1 is evaluated once before the loop is entered. The test
expression, expr 2, is evaluated before each execution of the substatement.
If it results in-a false (zero) value, the loop is not executed and execution
continues to the next statement. Expr 3 is evaluated after each time the
substatement is executed. -

Both eXpt l and expr 3 can be iilute tliafl one eXJH"ession, separated by
corrmas·. Expr 2- can only be one expression and should result in a logical
value. -

Due to limitations of the LC implementation, all three ·expressions in
parentheses must be on the same line.

for (C • 1 A1
; C <• 'Z' ; ++c)

putchar(c); /* print the letter*/
/* •Now I've said my ABC's ••• • */

BREAK STATEMENT

brelk ;

Break is used to exit any •while", •do", or •for• loop and to exit the
body of a •switch• statement. Whenever a break statement is encountered,
execution immediately goes to the next statement past the loop or switch
statement. Break is illegal outside of any loop or switch compound
substatement. For an example of the· use of break ·in a switch statement, see
the section on switch-case above.

strscan(c11 s)
char c,*s;

{ /* find character c in strings */
while (*s 1• c) ·

}

{ if (*s •• i) break ; /* end of string*/
++s; /* next character*/

}
return s ;

• STATEMENTS
2 • 28

-
'

/

"~~

L A N G U A 6 E D E F I N I T I O N

CONTINUE STATEMENT

-------~----------
continue;

The continue statement is used to skip the remaining statements in a
compound loop substatement. In a "while" or "do" statement, execution
continues at the test expression. In a "for" statement, execution continues
at the reinitializing expression (the third expression). The continue
statement is illegal outside of any loop statement.

/* convert to lower case */
while (Cc• getchar()) !• eof)
{ if (c < 'A' II c > 'Z') /* not

continue;/* doesn't apply*/
c • tolower(c) ;
putchar(c) ;

}

RETURN STATEMENT

return ;
return expression;

an uppercase character *Iv

-~ The return statement causes the currently executing function to end. If
an expression is provided, then the result of the expression is returned as
the value of the function. The returned value is undefined if no expression
is providecJ-·in the return statement. The return statement is not required to
return from a function. When no statements are left (the bottom of the
function body is reached), the function automatically returns as if a return
statement with no expression were encountered. Return statements are needed
when a value IWSt be returned or when the return must take place before the
end of the function.

square (num)
/* square a number */
{ return num * num; }

getline(buf)

{

}

char buf(J ; /* line input buffer*/

/* check for a valid file pointer*/
if (file_pointer •• NULL)
{ buf[~J • '\~• ; /* put a null string in buf */

return ; /* back to caller*/
}
fgets(buf, bufsize, file_pointer);

.
,#

$1.f\104fMi!S
2 - 29

LAN 6 U AGE DEF IN I i'l ON

GOTO STATEMENT .,~ ------... ··--·----
goto label;

The goto statement causes an unconditional branch to the statement
identifieQ by label.· The labeled statement must be contained in the current
function. It is illegal to attempt a goto to a statement in some other
function. An attempt to do so wil 1 result in an error during the assemb_ly
phase. The following example illustrates the use of goto (note: it is
strongly reconrnended that you avoid the use of the goto statement):

rest(time)
int time;
{

if (time> 23~~) goto sleep;
else return;

sleep: for C ; ;) .
t

}

LABELED STATEMENT
--~------~--~----

libel: stateaent;

Any statement can be prefixed with a label. This construction is usually
used to target the argument of a Ngoto• statement. The format of a label is a
valid identifier followed by a colon. The following are labeled statements:

calculate: i +a li;

bigblock: 1 • j • k • l • m • n • o • p • S;

• STATEMENTS
2 ... lt

,

)

J

0 P E 8 A T O R 6 U I D E

LC OPERATION
••••••••••••

LC takes C source code as input and generates an EDAS Version IV
compatible assembler source file as output. Thµs the output of the
compilation process must be assembled and linked with any required run-time
library module before it can be executed. The assembly and linking process is
performed using the EDAS IV assembler. A Job Control Language (JCL) file,
•LC/JCL•. is provided to present the compilation and subsequent assembly as a
Job stream to the operating system. The JCL procedure requires minimal entry
of commands by the progranmer to create an executable CMD file. The JCL f1le
is:

• Batch creation of a runnable ELSIE program •
• Format is: do le (file•<progname>,{show})
//if show
le #file# +l
//else
le #file#
//end
edas (jcl • abort)
l lc
c/cprogram/#file#
//if show
a#file# -we
//else
alfilel -nl
//end
b -
• completed compilation

If you want to compile a program called "myprog• and generate the finished
CMO file with only one statement, then the comand:

DO LC (FILE•MYPROG) I* See ATTENTION on page 3-11 */

lets you sit back and relax while the machine does all of the work. If the
/ASM and /CMD files do not already exist, you may want to enter ad.rive
specification as follows:

DO LC (FILE-HYPROG:l)

which looks for input and places output on drive one (1).

The first stage of the LC language process is, of course, to create an
LC source file. The editor that is a part of EDAS IV is provided for this
purpose. In order to use EDAS for the creation and maintenance of LC source
files, execute EDAS with the comand:

EDAS (LC)

The EDAS manual should be consulted for all operations concerning the editor
or assembler functions.

0 P E R A T O R G U I D E .

The second stage of the LC process is the compilation of the LC source
using the LC/CMO compiler. Use the JCL procedure shown above. However, if you
want to take direct control of the operation, you can execute LC directly. LC
is executed when a command line beginning with LC is typed at the •oos ready•
prompt or .encountered in a JCL file. The format of the comand line is
free-form • simply a list of input file specifications and option switches.
The command syntax is as follows:

•••

LC filespec {filespec ••• } {switch} {switch ••• }

filespec - A file specification for the input file{s).
A maximum of 8 filespecs may be passed.

I
I
I
I
I
I

switch - Represents an optional compiler switch(es) I
These switches are preceded with either a I
plus sign(+• on) or a minus sign (- • off).t

I
•••

The compiler is executed by entering a command line such as:

LC CPROGRAM:2 +LIST

which compiles the LC source file, •CPROGRAM/CCC•, and generates the output
file, •CPROGRAM/ASM•, on drive 2. The •+LIST• switch specifies that you want
the LC source code listed to the screen during the compilation process.

The switches allow the user to control certain features of the compiler.
Switches and filenames may be intermixed in any order on the c011111and line.
The simplest compilation convnand would simply be •Le PROGNAME" which compiles
the file, ·PROGNAME/Ccc•. and generates the output file, ·PROGNAME/ASM".

FILE SPECIFICATIONS

There may be up to eight input file specifications given on the conmand

line. They are processed by the compiler in the order they occur {left to
right). If no extension is given for a source file, the default extension
•tccc• is assumed. It is reconmended that you establish your LC source files
with this file extension for unifonnity and standardization. If you use •EDAS
(LC)• for your LC source code maintenance, the use of the /CCC extension is
automatic. ·

The output file specification defaults to the same name as the first
input file specified. LC will append the file extension •/ASM" to this name.
The drive specifier, if any, of the first input filespec is usf:!d as the drive
specifier of the output file. The drive specifier should be given if the
output file must be written to the same drive as the input file. The LC
OUTPUT option may be used to specify a different file name or change the
destination drive number. Assembler source code output may be suppressed by
turning cff the OUTPUT option. This can be helpful for quickly checking

•

Lt. Otflll'tM
~~ ' ?

'
l

'

. ').'
._,/

,,
0 P E R A T O R 6 U I D E

------. syntax without generating an output file.
l

-

COMPILER SWITCH OPTIONS

Compiler option switches are turned on or off by a '+' or '·',
respectively, followed by the name of the switch. For example, 11.tlist" causes
the LC source code to be presented to the standard output device during the
compilation. The compiler regards any conmand line argument not beginning
with a plus or minus as an input file specification. Only the first letter of
the switch is examined, so partial spelling (or misspelling) is accepted.
Certain switches have operands which are specified by following the option
name with '•' and the operand. For instance, •+outputamyf11e:3• will cause
the output by the compiler to be written to •MYFILE/ASM• on drive l-1 instead
of the filename that would have been the default.

COMMENT

This switch controls whether the original LC source code will be written
to the assembler output file as conments. The normal default is ON. The
C-source appearing as conunents may be instrumental in your understanding the
compiler output as it generates a minimally corrmented assembly source
program.

GLOBAL

GLOBAL controls the definition of external variables. If the switch is
turned off, -- variables declared external are not defined in the assembler
output. If turned on, external variables are defined in the assembly module
output. This switch defaults to on. For more information on using the GLOBAL
opti~n, see the ADVANCED TOPICS chapter.

LIST

The standard output would normally receive minimal feedback during the
compilation process. If the LIST option is turned off, LC will write each
function name followed by a period representing each statement in the
function. An example of this is:

main() { ••••••••••••• } •
. move() { •••••••••• }.
min() { •••• }.
max(){ •••• }.
p() { •••••••••••••••••••••••••• }.
No errors found

If you want to see the source code as LC is compiling, you must specify the
"+l" option, since the default is "-LIST". Note that since listing output is
to "standard output", it is subject to I/0 redirection. Thus, if you want a
printer lis~ing, for whatever reason, you could specify ">*PR" in the LC
conmand line.

LC OPERATIOtt
3 = 3

0 P E R A T O R G U I D E

OUTPUT"SPEC ~

--·--------
This switch controls the output of the compiler to the output file. If

the switch is off, no output file is generated. However, if it is on, but no
SPEC is given, LC appends "/ASM" to the name of the first input file in order
to create the output file specification. When a file specification is given
for SPEC, it becomes the name given to the output file. A default extension
of "/ASM" is inserted if no extension is given. If only a drive specificatjon
(":D") is given, the output file is written to that drive, with the same file
name as the first input file. This switch defaults to on with no SPEC.

PAUSE

When this switch is on the compiler will stop when any errors are found
and displayed. Any key except BREAK will continue compilation. BREAK will
abort the execution of the compiler at any time if this switch is on. If LC
was invoked from JGL, the JCL will also be aborted. This swi~ch defaults to
on.

LC OPERATION
3 .. 4

0 P E R A T O R 6 U I D E

CREATING A CMD FILE
•••••••••••••••••••

Once the LC compiler has compiled your program into assembly langu~ge,
you need to use the EDAS assembler to create the CMD file. In order to
provide the proper initialization in the CMD file and ensure that all
necessary runtime routines are linked with your program, a special assembler
file, LC/ASM, has been provided. A listing of the file follows to aid in
illustrating its functions:

;LC/ASM - j9/(IJ9/82

•*•*•* .
• .
•

This module is assembled to create the
run-time /CMD program file. The line: .

• 'ltfiET CPROGRAM .
• .
• .
• .
•

fetches the file containing your Nmain•
program compiled by LC. Separately
compiled C-source modules can be fetched
by adding additional *GET statements •
If you have created a user library(ies),
add additional *SEARCH statements •

.
• .
• .
• COM '<LC is copyrighted (c) 1982 by Jim Frinmel>
;*•*•*

ORG 52SiH
@START: LO HL, (4~9H) ;P/u Model I HIGHS

CALL @MOD13 ;Test for Model I/III
JR NZ,$+5 ; Go if Model I
LO HL, (4411H) . else use III' s • LO SP ,HL ;Set stack area
CALL @GO ; Initia 11 ze
CALL MAIN ;Execute user prog
LO HL,(IJ ;Set return code
PUSH HL
CALL EXIT ;Back to DOS

$$STEMP OEFL (IJ ;!nit relative storage
*GET LCMACS ;Get macros used by LC
*G.ET CPROGRAM ;Fetch user program

IF @_INLIB ;True if #option inlib
*SEARCH IN /LI 8 ;Installation lib?

ENDIF
IF @ FPLIB ;True if #option fplib

@ FPLIB DEFL @-FPLIB.OR.FPINIT ;Force GET of fpinit()
. *SEARCH FP /LIB -

ENDIF
*SEARCH LC/LIB ;Standard lib always!
SSSTORG EQU s ;Set to 1st storage byte
SPROGEND DEFL $$STORG+$$STEMP ;Establish program end

END @START

The LC/ASM file provides a front end that makes your program usable on either
a Model I or Model III. This is the file that is assembled. Notice that the
bulk of the resulting CMO program is assembled from files via the *GET

_,,1 statement and *SEARCH statements. If you have not yet read chapter five of
•

LC OPERJfflOli
r

0 P E R A T O R 6 U I D E

the EDAS manual, you may want to temporarily turn to the sections on 'trGET and
*SEARCH located within the fifth chapter.

If your compiled program file was named MYPROG/ASM, it is linked into
LC/ASM by changing the statement u*GET CPROGRAMu to "*GET MYPROG". This is
done simply with the EDAS editor or is automatic when using the LC/JCL Job
Control Lan·guage .. hands-off" procedure.

For a great deal of your programs, the only LC runtime routines needed
will be located in the LC/LIB library. Since all LC programs need some of the
routines in LC/LIB, that library is ALWAYS searched during the assembly
process. The floating point library, FP/LIB, will be automatically searched
if your program requested the floating point library search via an Nfoption
fplib" compiler macro. This 1s explained 1n more detail in the LC LIBRARI~
chapter.

Many usefu ·1 routines are stored in the installation 1 ibrary, IN/LIB.
This library is not normally searched in order to save you assembly time when
you need not refer to the IN/LIB routines. However, it is very easy to force
an automatic search of the installation library. All you need to do is
spec if y ~J! "lop t ion in 1i b II comp i1 er macro in your LC source program (similar
to "loption fplib"). For example,

#include std1o/csh
fopt1on 1n11b /* This statement invokes -SEARCH IN/LIB *L
main()
int dot;
{ for (dotarfi, dot< 128, dot++)

set(dot, (j);
exit(fi);

}

will schedule the compilation and assembly of your program with a forced
search of the installation library (to resolve linkage to the "set()•
function.

• .. LC OPEiATION
3 ~ 6

....

\
J.

')

,~

..

0 P .ER ATOR 6 U IDE

COMPILER DIRECTIVES
··••1••···••=••·••=•

The LC compiler supports a handful of directives that control various
aspects of the compiler during the compilation process. One of these
directives, Nfinclude filespecu, you will quickly become familiar with.
Others may be used less freqµently. They, nevertheless, provide additional
power in the use of the LC language Nsystemu. These directives are:

#include --------
#include <f11espec:>

This directive tells LC to insert the file designated by •filespec• into
the source stream being compiled. The <filespec> will default to an extension
of /CCC if no extension is given. The #include is used quite frequently to
merge the STDIO/CSH standard header file into your compilation. An
illustration of its use is:

#define

/* sample program to illustrate #include*/
#include stdio/csh
main()
{

int x; .
x • -3 + 4 * 5 - 6; printf(•%d\n•,x)

}

#define <macname> <definition>

The •define• directive is a macro definition. It creates a macro, called
Nmacname", which is defined to be the string of characters following the
macname (the definition). The compiler will substitute the string wherever
•macname" is found in the LC source stream. It is strongly recormiended that
macro Nmacnames• be defined in upper-case characters so that it becomes
distinct when looking at your source code.

<macname> 1111st be a valid LC identifier, whereas the <definition> is
anything and everything up to a comment or the end of the line. The
<definition> is substituted whenever the <macname> is encountered in the LC
source code input past the #define of <macname>.

An example of the use of #define follows:

#include stdio/csh
#define PRINTX printf("%d\nu,x)
main()
{ int x;

x • -3 + 4 * 5 - 6; PRINTX;

}
x • 3 + 4 % 5 - ~; PRINTX;

•

LC OPER.ll,TION
-,; "'.~

0 P E R A T O R 6 U I D E

#option :...-----.,

#option <optname> {value}

The #option directive 1s used to pass symbol definitiQns from the LC
source code- to the assembly phase. The <optname> 1111st be a .valtd ___ _LC _________ ~-~~-~-
identifier. Value must be a numeric or character constant. Escape sequences
may be used in the constant. The compiler translates the #option directive to
the form:

DEFL value

The •value• is optional (as shown above by apearing within braces). If thep
1 value is omitted, the DEFL statement will default to a value of negative one

(-1). This indicates TRUE to the EOAS assembler.

The #option directive is used in LC to invoke a search of the
installation library, IN/LIB, or the floating point library, FP/LIB. If your
application will be using functions in either library, you will need to add
the statement(s):

#option FPLIB
#option INLIB

for the floating point and installation libraries respectively.

LC has reserved additional option names for use with ·the #option
directive. These are:

AAGS

FIXBUFS

KBECHO

MAXFILES

REDIRECT

- specifies that your program {will}/{wi11 NOT}
be using comand line arguments (argc, argv).
LC will suppress the run-time code normally
used to process arguments thus reducing the
size of your CMD program.

• specifies pre allocation of buffer space for
standard I/0.

• specifies echoing of keyboard input
to the video display when inputting
from a file opened with filespec, "*KI".

- specifies the maxi1111m nunt>er of concurrently
opened files permitted.

- specifies that your program {wi11}/{w111 NOT}
be using standard I/0 redirection(>,<,#).
LC will suppress the run-time code normally
used to process I/0 redirection thus reducing
the size of your CMD program.

For additional information on the use of these options and "#option• in
general,, read the secticm. on opt·ions jn the ADVANCED TOPICS chapter.

LC OPEMTlON
3 - 8

' __ _)

0 P E R A T O R 6 U I O E

I asm - #end asm
... --------------

#asm
•
transparent usemb ly 1 anguage code
•

#endasm

The directive pair, lasm - #endasm, can be used to insert assembly
language source code directly within the LC source file. It should be used
ONLY when it is ABSOLUTELY necessary to write a routine in assembly language.
Remember, any LC source code file that has imbedded assembly language fade is
generally NOT portable. The more assembly language code you imbed, the less
portable your programs become and the more you have to recode when
transporting your program to another machine.

All input past the lasm statement is passed unchanged into the output
file. Of course, since the output file is an assembly language source file,
the statements following the 11#asm 11 should be assembly source statements. The
block of assembly statements is ended with the #endasm statement. Please
note: the 11 #endasm 11 statement 111Jst be the first thing on a line, other than
tabs and spaces. Otherwise the 11 #endasm11 will not be recognized and the C
source code following the 11#endasm11 will be passed unco111>iled to the output
file.

This escape to assembly language is provided as a convenient kludge
mechanism only. It is not intended to be the normal way of interfacing
assembly language functions to a C program. The proper way to interface to
assenoly language is to place the assembly function in a separate module,
perhaps even in a user library if it is to be used frequently. This makes the
program easier to transport to other systems, as the machine-dependent code
is separated from the program source. See the Advanced Topics chapter for
more information on assembly language progranming in the Elsie environment.

•

LC OPERATION

OPERATOR GUIDE"'

A SIMPLE EXERCISE -----,_

It may prove helpful to you to see a program generated from start to
finish. It will be a small one, but nevertheless, one that will exercise all
of the steps needed to accomplish the creation of a CMD file. If you have
ever enterec;i and/or edited a BASIC program, you are ready to perfonn this
exercise. Before we begin, remember that you wi 11 need the LOOS keyboard
driver activated. A few of the extra keyboard characters will be needed. It's
probably a good idea to refresh your memory as to the key combinations.

character key combination
-------- ---~----~--~~~-

C
\
J ...

T
I
} -

CLEAR-COMMA
CLEAR-SLASH
CLEAR-PERIOD
CLEAR-SEMICOLON
CLEAR-ENTER
CLEAR•SHIFT-COMMA
CLEAR-SHIFT-SLASH
CLEAR-SHIFT-PERIOD
CLEAR~SHIFTQSEMICOLON

You must have the book, •The C Prograrrming Language• by Kernighan and
Ritchie. Open it to page 15 and note the program· shown at th~_ top of the
page. You are going to enter it. Fi·rst 11 execute EDAS with:

EDAS (LC)

The •Le• parameter tells EDAS to accept lower case input, set tab characters
at every four positions, and use /CCC as the default file extension. You will
observe the EDAS heading message. Now enter the conmand. · •1•.· EDAS will go
into insert mode and display the first line number. As you enter each line,
terminate it with <ENTER>. You should get into the habit of using the <TAB>
key (right-arrow) to organize your LC code into neat indentations. It will be
shown below as •<T>•. Follow the line numbers shown below with the text as
found in K & R.

EDAS YOU TYPE

·-------~-~----------~--------------------------------lllil111 #include s.td1o/csh <ENTER>
fl"lli main()/* copy input to output*/ <ENT~R>
~~12fl { <ENTER> . ,
fl~l3j <T> int c; <ENTER>
ifll4'1 <T> while ((c • getchar()) 1• EOF) <ENTER>
flfllSi <T><T> putchar(c); <ENTER>
f1Gl6fl. } <ENTER>
flfll7'/J <BREAK>
> w clone:d <ENTER> /* •:d• specifies the drivespec */

New f11e!
> . b

• LC OPERATION
3 - 1.11

~/
I

\

v

'

0 P E R A T O R 6 U I D E

You have just entered an LC program, saved it under the name "CLONE/CCC:d",
and returned to DOS Ready. Now enter the conmand (with 11 :d" representing your
dri vespec):

DO LC (FILE•CLONE:d)

If you have entered the program correctly, LC should compile your program and
invoke its assembly to create the CLONE/CMD file. Try out your program
according to K & R.

If you want to start understanding the concepts of 1/0 redirection, turn
to page 1-7 of the INTRODUCTION. The program you have just compiled into an
executable CMO convnand is used to illustrate I/0 redirection. Try wt the
examples shown.

>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<
>>>>> <<<<<
>>>>> ATTENTION <<<<<
>>>>> <<<<<
>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<

If you are invoking LC with the DO LC (FILE•MYPROG) conmand and the
EDAS assembly aborts with a Job Control Language, •Job aborted" message, you
most likely mistyped one or more identifiers (variable names, function names,
etc). You can easily discover the error by reinvoking the procedure with the
conunand,

DO L-C CF°ILE-MYPROG,SHOW)

• ,:/

L C L I B R A R I E S

STANDARD LIBRARY
••••••••••••••••

The standard library, LC/LIB, is a collection of useful functions that
allows the user to inter~ace with the world external to the program, without
having to know the specifics of the particular environment that the program
is running in. Thus, a program can be transported in source form to a
different computer under a different operating system. Only the standard
library need change between systems.

The library is defined in a device independent way so that a program can
use any device for input or output. Since any file is defined as a sequence
of bytes, all devices can be interfaced to as files. LOOS already J?rovides
this type of device independence, thus the implementation of LC ·110 is
totally compatible with normal LOOS files.

The standard library ~lso provides functions to perform machine
dependent operations, such as memory allocation and character set operations.

Every program in executable form under LOOS requires a small run-time
module in order to open standard I/0 and provide I/0 redirection, initialize
the I/0 and memory allocation functions, and to provide basic operations that
LC programs require, such as MULTIPLY, OR, and AND.

The library is constructed as a Partitioned Data Set. LC functions are
stored in asseni>ler source form as members of this data set. The standard
library 'Is accessed by the EDAS assembler from the "*SEARCH LC/LIB" comand.
Any member needed by your C language program is automatically linked with
your program during the assembly phase of the LC compiled output. See the
chapter titled, "OPERATOR'S GUIDE", for more information.

Slf:W~~; li.., '[ti:n~IJ
4 - 1

LC LIBRARIES-

ALLOC () .:---

This function is used to allocate a memory block. Its syntax is:

············•=-••···
ptr • 1lloc (nbytes);

nbytes

ptr

- unsigned nuni:>er of bytes needed.

- address of the block allocated.

-··· .,..v
Alloc() is used to dynamically allocate memory during program execution.

The complementary function, free(). is used to release memory allocated
through alloc(). Alloc may be used to get table or buffer space when the
amount of memory space available is unknown. such as a program designed to
run 1n any size memory machine (16k, 32k, 48k). The progranmer can call
alloc() with decreasing size of requested space until the space is allocated.

RETURN CODE

---------···
If a memory block has been allocated. the value returned is the address

of the memory block. If insufficient memory is available to satisfy the
allocation, alloc() will return a null (i).

WARNINGS

The program must not access memory outside of the area allocated. File
access routines use alloc() and free() to establish and release File Control
Areas (FCA's). The programmer cannot assume that memory not allocated is free
for use, since later file opens may cause memory overlays. It is advised that
the prograrrmer always use alloc() and free(), or sbrk() for all dynamic
memory accessing.

EXM>LE --------
symtbsz •• symtbsz % syms1z;/* make integral */ ·
if ((symtab • alloc(symtbsz)) •• i)

abend(•not enough memory•);
glbptr • startglb • symtab;

STANDARD LIBRARY
4- ... 2

/

y

•.J/

L C L I 8 R A R I E S

DATA CONVERSIONS: ATOI() ITOA() XTOI() ITOX()
•••

These functions are used .to convert character strings of dig-its (decimal
or hexadecimal) to their integer value and vice versa. The syntax is as
follows:

•••

int• 1toi(decs);

ito&(int, decs);

int• xto1(hexs);

itox(int, hexs);

1nt - is an integer value.

decs - is a string containing decimal digits <~-9>

hexs - is a string containing hexadecimal digits
<i-9>, <A-F>, or <a-f> •

•••
These standard C functions are used to convert integer values to their

~,.. character string image and the converse. Functions are provided to deal with
character -strjngs containing either decimal or hexadecimal digits. Left
truncation of the integer value takes place if an excess nunt>er of digits is
present (i.e. int•xtoi(•ll0~j•) would result in the integer value of. ~96
decimal). Conversion of a decimal string will be modulo 65536.

Note: the C itoi() function has not been implemented for <i>vious
reasons.

RETURN CODE

There is no return code.

S"f Aw&~P.Jl:O llR~Y ..,

LC LIBRARIES,

EXIT()
••••••

This function is used to exit your LC application and return to DOS. Its
syntax is:

•••

exit(code);

code - integer return code •

•••
Exit() allows the user to exit cleanly from a program and control thcv

consequences of exiting. Passing a zero CS) for the return <code> to exit()
indicates normal program tennination. causing exit() to take· the LOOS normal
exit. If a non-zero <code> is passed, exit() will take the error entry into
LOOS, thus aborting any JCL processing in effect.

If the tenninating program was invoked by the cmd() function, the value
passed to exit() will be the value returned from and(). An exception is if a
negative value value is passed to exit(), in which case a negative one C-1)
is returned to and().

Exit() closes all open files before returning to LOOS.

RETURN CODE
..................

Exit() does not return to the caller. •
WARNINGS

For compatibility with other C language systems, the programmer should
not depend on exit() to close the program's files (other than standard I/0
files).

STANDARD LIBRARY
4 - 4

./

" \

L C L I B R A R I E S

FClOSE()
This function is used to close an open file. Its syntax is:

...

retcod • fclose (fp);

fp - the file pointer •

•••

Fclose() is used to close an open file and to free the file control area
(FCA) for later use. The <fp> pas~ed to fclose ffljSt have been obtained from
fopen(). In LC, exit() also cloS;es files; however, the- progranmer should use
fclose() to ensure coq:,at1blity and ,portability.

There is a 11 mi ted nuni>er of files (detenni ned by the MAXFIU:S . .comp 11 er
option), including standard files, that may be open at one time. Fclose() is
used to free FCAs so an unlimited nuni>er of files may be accessed one after
the other.

RETURN CODE

\ The •retcod• will be non-zero if no error was detected in the closing
\... operation. If an error was detected, then •retcod• will be zero Cl).

WARNINGS

The value passed to fclose() must be a valid file pointer. If it is not,
unpredictible things, such as destroyed disk files, reboots, etc., can
result.

EXAMPLE

if (lastc !• ixla) putout(0xla);
fclose(fpl); fclose(fp2);
printf(•Files now closed•);
exit(I);

LC LIBRARIES'

FGETSO ----

This function is used to get a buffered line from a file. Its syntax is:

•••

eof1nd • fgets(buf, mu, fp);

buf - address of the buffer area.

mu - the maxirwm length of the input string.

fp - the file pointer •

•••

Fgets() is used to obtain a buffered line from a file. A file may be the
console keyboard, the RS-232 interface, or any input device or disk file. Up
to (max) bytes will be placed in the buffer. Input is terminated when either
an end of line (jOH) or end of file is encountered or maximum buffer size is
reached.

For compatibility with LOOS JCL files, keyboard line input is performed
using the iKEYIN system call. Fgets() recognizes the BREAK key as the end of
f 11 e from the keyboard. ·-

RETURN CODE

The end-of-file 1nd1cat1on, •eofind•, is the return code. •eofind• is

NULL (zero) if an end of file is encountered; otherwise, •eof1nd• is <buf>.

STANDARD LIBRARY
4 - 6

/

,; "\

/
./

', . .,'/

L C L I 8 R A R I E S

FOP EN()
•••••••

This function is used to open a file/device. Its syntax is:

fp • fopen(fspec, mode);

fspec

mode

- is the address of the file specification.

- the address of the access mode identifier:
uru or "R 11

• read; 11w11 or 11W11
• write;

•au or •Au• append.

I
I
I
I
I
I , ... ,
I
I

•••

Fopen() allows the prograJ1111er to initiate access to a file. Except for
standard input, output and error files which are automatically opened, all
files must be opened using fopen(). "fspec" points to a file specification
string. 11mode 11 points to a string defining the mode of access. Allowable
modes are read, write or append. Only the first character of "mode-" is
checked, and that character may be upper or lower case.

The file pointer is used whenever access to the opened fi-le is needed.
If zero is r~turned, an error occurred during the open process.

~- RETURN CODE

The file pointer, "fp",
open operation. 11 fp 11 will
during the open operation.

WARNINGS

is returned if no errors are detected in the
be set to NULL (zero) if an error is detected

Opening the same file for both input and output with two or more calls
to fopen() should NOT be done. If the file is accessed in th1s manner, it
will create unpredictable results, possibl., causing loss of file integrity.

EXAMPLE

getfil e(fname)
char *fname;

{ FILE *fp;
if ((fp•fopen(fname,"r")) •• NULL)

}

{ printf{ 11 0pen error - %-20s\n",fname);
exit(};

}
else return fp;

STAHOARD LIBRARY

LC LIBRARIES"

FPRINTF() ,
•••••••••

This function is used to create a formatted image for output to a
device/file. Its syntax is:

---~·-···
reteod • fprintf(fp. control. 1rgl. ar-g2 ••••);

fp

control

- is a file pointer.

- is a string as specified under PRINTF().

- are arguments as specified und.er PRINTF() •

•••

RETURN CODE ,. _______ _

The •retcod· will be zero 1f no error was detected in the output
operation. If an error was detected, then •retcod• will be EOF (-1).

STMDARD LIBRARY
;'f " 8,

-

----.

L C L I B R A R I E S

FPUTS()
•••••••

This function will output a string to a file/device. Its syntax is:

·······••=••··············••=••·······••=•••====••·············
retcod • fputs(string, fp);

string - is the address of the string to be out?ut •

••• I',
Fputs() outputs to the file defined by •fp•, all characters pointed to

by •string•, up to the first zero byte.

RETURN CODE

The

operation.
(-1).

WARNINGS
•-••--oce•

"retcod• will be zero if no error was detected in the output
If an error was detected, then "retcod" will be equal to "EOF•

·· \ Calling fputs() with an invalid file pointer can result in destruction
,_ of files or other havoc •

. ..
STl:\liGA.RD L l BR.ART

,·.

L C L I 8 R A R I E S w

FREE()
IIBIIIIIIUllllllll8

This function frees memory allocated with alloc(). Its syntax is:

•••

free(ptr);

ptr - address of the bottom of the memory blockQ
.

I
I
I
I
I

•••
Free() is called when a memory block allocated to the program by the

function alloc() is no longer needed, and the progranmer wishes to free the~
memory space for later use. •ptr• points to the first (lowest) byte allocated
to the program by alloc().

RETURN CODE

ihere is no return code.

WARNINGS

Calling free() with an address other than that obtained from a call to ·,
a11oc() will cause unpredictable results, probably a program crash when the
next alloc() occurs. -✓

\

\
l

'--

' . ./

L C L I B R A R I E S

GETCO
••••••

This function is used to fetch (input) a character from a file/device.
I ts syntax is:

·······················••=•=••••=••······••=••················· '
c • getc(fp)i

fp - is the file pointer •

••• ~?

Getc() is used to input a single byte from a file. •fp• 1111st be obtained
from fopen() or be a standard file pointer. Any of the 256 possible binary
codes may be input using getc(). An end of file code, •EoF• (-1), is returned
if end of file is encountered.

RETURN CODE

The return code is the integer value of the character input from the
file. If an end of file is encountered, then "EOF" (-1) is returned.

WARNINGS
The~,~• must be a valid file pointer or devastation may result. You are

warned!

If •c• is to be stored before testing for end of file it lllJSt be stored
in an integer variable. If not, the end of file value will be truncated and
will remain undetected.

EXAMPLE

filecopy(fp)
FILE *fp;

/* copy a file to the standard output*/

{

}

int c;
while ((c • getc(fp)) !• EOF)

1f (c !• putc(c,stdout))
abort("Output file write error");

ST.A1-&Dk1.D LIBRARY

LC LIBRARIES~

6ETCHAR()

This function is used to get a character from standard input. Its syntax
is:

······················•·=•=••··································
c • getchar();

- there are no parameters •

•••

Getchar() inputs a single byte from the standard input. Getc() is u~
to perform the input.

RETURN CODE

The return code is the integer value of the character input from the

file. If an end of file is encountered, then •EoF- (-1) is returned.

WARNINGS
------·--

If <c> is to be stored before testing for end of file, it must be stored
in an integer variable, or the EOF value will be truncated to 255.

EXAMPLE --------
bytes• lines• i;
while((c•getchar()) !• eof)
{ putchar(c);

}

++bytes;
if Cc•• eol) ++lines;

STANDARD LIBRARY
4 .. l:2

/
)

,_y

.. \

·~

L C L I B R A R I E S

GETS()
••••••

This function fetches (inputs) a buffered line from standard. input. Its
syntax is:

eof1nd • gets(buffer);

buffer - is a pointer to an 81 byte buffer.

···-············ ,...,v

Gets() inputs a line up to BG characters long from the standard input
and places the line in memory starting at the address given by <buffer>.
Fgets() is used to perform the input.

RETURN CODE

The end-of-file indication, "eofind•, is the return code. •eofind• is
NULL(~) if an end of file is encountered; otherwise, •eofind• is <buffer>.

WARNINGS ---------
The •buffer• must be at least 81 characters long.

STMOAAO liBRAAY
4 "" l ~J.

L C L I 8 R A R I E S .

MOVE()

This function will copy a memory block in memory. Its syntax is:

mve(pfrom, pto, len);

pfrm

pto

1en

- the address of the block to be moved.

- the address of the block's new starting
address.

• the length of the block, in bytes.

This function will perform a nondestructive move of a memory block. That
means that if the 11 pto• address is less than the 11 pfrom11 address, the move
will start from the beginning of the block. If the 11 pto11 address is greater
than the 11 pfrom11 address, the move will start from the end of the block.

RETURN CODE

There 1s no return code. ·-
WARNINGS

There is no checking on the magnitude of •1en•; thus, a move() with an
erroneous value for "len• _could overwrite a critical portion of memory.

STANDARD LIBRARY
4 .. 14

. . .
./

" \

L C L I B R A R I E S

ISALPHA() ISDIGIT() !SLOWER() ISUPPER()

These functions are used to test a character. Their syntax is:

I
retcod • isalpha(char); I

I
retcod • 1sd1git(char); I

I
retcod • 1slower(char); I

1 ,
· retcod • 1supper(char); I

I
chu- - is the character under test. I

- - ------, - -

...

11 isalphau is used to determine if a ucharacteru is an upper-case or
lower-case alphabetic (<A-Z, a-z>). uisdigit()M is used to determine if a
"characteru is a digit in the range <0-9>. 11 islower() 11 is used to determine
if a 11 character• is an alphabetic in the range <a-z>. •isupper()• is used to
determine if a •character 11 is an alphabetic in the range <A-Z>.

RETURN CODE -.-.---------- '

Each function will return a TRUE Cl) or FALSE (0) value based on the
results of the test.

EXAMPLE

if (isdigit(char))
printf(11Character is <0-9>\n 11

);

else if (islower(char))
printf(11Character is <a-z>\n 11

);

else if (isupper(char))
printf(11Character is <A-Z>\n 11

);

else
printf(11 Character is none of the above\n•);

ST ANUAAO LI i::ft-.'\RY
/~ •! • "

L C LIBRARIES~

PRINTF()
••••••••

This function creates a formatted image for· standard output. Its syntax
is:

printf(control, argl. arg2, •••);

control - is a string containing transparent printing
characters and conversion specifications.

argn - are arguments to be formatted for the output
print image.

This function is used to create an output image to the standard output
device. The specifications for formatting the output are determined by the
character string, •control•. This string will contain ordinary characters
copied directly to the output image and/or specifications denoting the field
conversions of all arguments .• The conversion specifications take the form of:

S{-}{xxx}{.yyy}char
--

/

.)

As can be noted, the specification is a sequence of sub-fields of which the -....._
percent sign (S) and the •char• are mandatory. The percent is an •escape•
character signaling the start of the field specification. The •char• denotes .J.,.,,
the format of the output field image {binary, decimal. string, etc.}. The
sub-field specific«stions are interpreted as fol lows:

S • the mandatory specification initiator,

• • specifies that the value will be left-justified within
the print field image,

xu • specifies the minimum width of the print field image,

.yyy • specifies the maximum number of string bytes to print,

char • the conversion character {b•binary, o•octal, d•decimal,
x•hexadecimal, s•string, c•character, u•unsigned}.

Any portion of the control string· which cannot be interpreted as a
conversion specification field is considered to be transparent printing
characters and will be passed directly to the print image.

EXAMPLE

printf(Hld characters, Id lines were copied\nu, bytes, lines);

STAAOARD LIBRARY
4 - i6

L C L I B R A R I E S

~. PUTC()

->·

••••••

This function is used to output a character to a file. Its syntax is:

••=••····················•·=•••=••············••=••·····••=••·· I
cret • putc(c, fp); I

I
c - 1s the character to be output. I

. I
I fp - 1s the file pointer for the output file. I
I . I,..
••• w

Putc() is used to output single characters to a filee •c• is any of the
256 possible char4cter codes. If an integer value is passed it is
left-truncated, so that only the least significant byte is output.

RETURN CODE

The return code, •cret 11
, is the character passed in •c• if no errors are

detected otherwise, it will be different from the character passed in •c•.

WARNINGS

•fp• mu~t be a valid file pointer obtained from fopen() or one of the
standard 1/0 pointers (stdin, stdout, stderr) or destruction of files may
occur.

EXAMPLE

if (putc(c, fp) !• c)
return(l);

else return(!O);

•
STAHOAR~ VI!M~~

4 - t7

L C L I 8 R A R I E S ,,

PUTCHAA()

This ·tunction is used to write a character to standard output. Its
syntax is:

cret • putchar(c)i

C - is the character to be output.

•••••••••••••••••••••••••••••••111•••••••••••••••••••••••aaaaaa111a

Putchar() outputs the character •c• to the standard output file. Putct~
is used to perform the output operation.

RETURN CODE

The return code. •cret• is the character passed in "c•, if no errors are
detected.

WARNINGS ___ .., ____ _

There are no warnings.

,. • STANDARD LIBRARY
4 - 18

\

L C L I B R A R I E S

PUTS()
••••••

This function is used to output a string to the standard output. Its
synt~ is:

•••

retcod • puts(string);

string - is the address of the string to be output.

••• ~w

Puts() outputs <string> to the standard output file. All characters up
to the first zero byte are output. If an' error occurs during output, the
value "EOF• (-1) is returned; otherwise, a zero is returned.

RETURN CODE

The •retcod• will be zero if no error was detected in the 1/0 operation.
If an error was detected, then •retcod• will be set to "EOF• (-1).

WARNINGS,
There are no warnings.

EXAMPLE

if (argc ! •3)
{ puts(•Format error: compare file! file2\n•);

exit();
}

L C LIBRARIES''

SBRK()
••••••

This function is used to allocate a memory block. Its syntax is:

ptr • sbrk(nb,Ytes);

nbytes • an unsigned integer nurmer of bytes needed.

•••

Sbrk() reserves memory for use by a program from the ~ystem memory pool.
The memory allocated by sbrk() cannot be deallocated until the progr'"~~
finishes execution. Alloc() uses sbrk() to request blocks of memory as
neec,ed. If the memory requested wil 1 only be needed for part of the exec!Jtion
of 'the program, it is reconmended that alloc() be used.

RETURN CODE

The return code, "ptr", is the address of the allocated block of memory
;f the sbrk() was successful. If not enough memory is available to satisfy
the request, "ptr" is set to NULL ({ii).

WARNINGS _, _______ _

Only memory allocated by sbrk() or alloc() should be used by the
progrcUmler for dynamic space. File opens and closes, including standard
files, use these functions for setting up File Control Areas (FCA's). These
FCAs can be clobbered if the program accesses unauthorized memory.

STANDARD LIBRARY
4 .. 20

.\

y

·~
I

L C L I 8 R A R I E S

T0L0WERO T0UPPERO
••••••••••••••••••••

These functions are used to convert a character from one case to the
opposite case. Their syntax is:

•••
I

C • tolower(char); I
I

C • toaapper(char); I
I
I

char - is the character under test. rv
I

C - is the converted result. I
I

•••

•tolower• is used to convert an upper-case character <'A' through 'Z'>
to a lower-case alphabetic <'a' through 'z'>). •toupper• performs the
opposite function; a lower case character is converted to upper case. Both
functions affect only alphabetic character-s; numbers, special synt>ols, etc.,
are returned unaltered.

RETURN CODE

Each fupction will return the converted character, ts .~r=eg=u~i~r~ed==--·-------

,i -· 21

L C L I B R A R I E S ,.

INSTALLATION LIBRARY
••••••••••••••••••••

The installation library is a collection of functions very specific to
the particular machine LC is running on. Also included are functions not
considered to be "standard" C functions These functions group themselves into
STRING functions, PLOTTING functions, and CONTROL functions.· All of the
functions are contained in the library, IN/LIB (note: STRCAT, STRCMP, STRCPY,
and STRLEN are documented under the string functions; however~ since they are
standard c. they are physically located in the LC/LIB library).

If your LC program is going to make use of any of the functions
contained 1~ the IN/LIB library, you will have to insert the compiler
directive statement:

#option IN/LIB

1n your C source pr9gram.

INSTALLATION LIBRARY
• 4. - 22

,

L C L I B R A R I E S

\ PRIMITIVE PLOTTING FUNCTIONS
••••••••••••••••••••••••••••

The plotting functions support the block graphics mode available to the
CRT screen. The installation lib.rary plotting funct·ians include functions to
control individual pixels {picture elements), as well as to create various
1 ine constructions. The primitive functions are used to turn on, turn off, or
detennine the status of any point (pixel} in the scree~·irnageo The syntax of
these functions is:

•••
I
I retcod • pixel{ funcod, x, y);
I
I retcod • point(x, y);
I
I reset (x, y);
I
I set(x, y);
I
I funcod
I
I
I X
I
I y.
I

- specifies whether the pixel is reset(~),
set (1), or pointed (2).

- specifies the horizontal coordinate.

- specifies the vertical coordinate.

•••
-·-

The •point()• function will return the status of the pixel at the
coordinate, x.,y. A return code of one Cl) indicates that the pixel is turned
on (light) while a zero on in•dicates · that 'the pixel is turned off {dark). If
the pixel contains something other than a graphic character, a negative two
(-2) is returned. A negative one {-1) indicates the point x,y is out of
rangie.

The •reset()• function will turn off the specified pixel while the
•set()• function turns on the pixel. Neither of these two functions provides
a return code unless x or y is out of range.

The •pixel()• function can be used to point, reset, or set the pixel
depending on the function code supplied as the argument. •pixel()• issues a
return code only when the function code passed is indicative of •point• (2)
or when an argument is invalid.

The plotting functions specified above refer to the. arguments detailed
as follows:

funcod

This function code specifies the operation to be perfonned on the pixel.
It can be an integer value in the range <0-2>. If the argument passed is
outside of this range, the return code will be negative three (-3) indicating

. ..
INSTALLATION LIBRARY

4 .. 2~~

L C L I B R A R I E S~,

an invalid function code .. These codes are used as follows:

x or y

Ii} - Indicates the. 11 reset 11 function which will turn off (make dark)
the pixel. /

1 • Indicates the "set" function which wi 11 turn on (make light) the
pixel.

2 - Indicates the 11 point" function which will return the status of
the specified pixel. The status will be zero Ci) for reset, one (1)
for set. negative one (-1) if xl,yl ·is not in the CRT image, or
negative two (-2) if the specified pixel does not contain a graphic
character.

This integer value specifies the pixel position along the x-axis
(horizontal) or y-axis (vertical). The value is a virtual pixel, which nieans
that it does not have to be a position in the CRT image. However, where a
1 foe is being constructed, only that part of the line actually in the CRT
image area will be plotted. The direction away from the origin is always
considered to be in the positive direction (for more infonnation on this
subject, see the pmode() function) ••

. RETURN CODE

Return codes are provided by the above functions where app1icable. Tnese

codes are indicat·ive of the fol lowing:

EXAMPLE

i - Indicates that the pixel is reset (point(x,y) or
pixel (2,x,y)J.

l Indicates that the pixel is set (point(x,y) or
pixe1(2 11 x,y)J.

-1 - Indicates that the point xl,yl is out of range (i.e.
virtual and does no.t appear in the CRT image).

-2 • Indicates that the pixel does not contain a graphic
character (point{x.y) or pixe1(2,x,y)J.

-3 • Indicates that the function code passed to pixel()
is invalid (not in the range <i-2>).

This routine plots a horizontal line:

for (x • i, y • 4~; x < 128; x++)
set(x. y);

• INSTALLATION LIBRARY
4 "" 24

":\

,,

L C L I B R A R· I E S · ·.: ·

ADVANCED PLOTTING FUNCTIONS
•••••••••••••••••••••••••••

These functions are used to plot geometric shapes {lines, rectangles,
and circles}. Their syntax is as follows:

•••

retcod • box(funcod, xl, yl, x2, Y2);

retcod • circle(funcod, xl, yl, rl);

retcod • line(funcod, xl, yl, x2, y2);

funcod

xl,yl

x2,y2

rl

- an operation code to set Cl) or reset (i) the
pixels involved in the geometric plot.

- the coordinate of the first point defining
the geometric shape.

- the coordinate of the second point defining
the geometric shape.

~ the radius of the circle in •y• units •

I
I
I
I
I
I ,..v

•••
The •line()• function will plot a line connecting coordinate point xl,yl

with coordinate point x2,y2.
'

The •circle()• function will plot a circle at coordinate center point
xl,yl of radius rl. The integer value, •r1•, specifies ·the radius of the
circle. Since block graphics are generally taller than their width, it is
necessary to specify the radius in units of either •x• or •y•. Within these
plotting functions, •r1• is a value representing the radius in •y• units.

The •box()• function will plot a rectangle around the diagonal specified
by the coordinate point pairs, xl,yl and x2,y2. If the coordinates specified
either equal x (xl • x2) or equal y (yl • y2), then the rectangle will
diminish to a line. The rectangle will collapse to a point. if both xl•x2 and
yl•y2.

VIRTUAL POINTS

The concept of virtual points is an ·important one. What it means is that

your plotting routines do NOT have to limit themselves to the CRT image area.
For example, a circle(l,0,0,2~); function describes a circle about the
origin. This means that a portion of the circle would be plotted off of the
CRT image. The plotting functions permit your arguments to describe such
"virtual• images; however, any portion of the geometric shape that would be
outside of the CRT image area is inhibited. Thus, in the above example, only
a portion of a circle (an arc) will be plotted.

INSTALLATION LIRRARY
4 - 25

LC LIB"RARIES

It is also important to note that if any virtual pixel is described in
your arguments, the function will return a negative one {-1) after co~leting
the entire geometric plot. Your program can make use of this return code if
it needs to detect this fact.

RETURN CODES

Return ·codes are provided by the above functions where app 1 icab le. These
codes are indicative of the following:

EXAMPLE

-1 - Indicates that the coordinate points xl,yl , x2,y2,
or a portion of any plot is out of range (i.e. virtual
and does not appear in the CRT image).

-3 - Wil 1 be returned if the function code passed is invalid /'~
(not in the range <S-1>.

The fol lowing routine wi 11 plot increasing rectangles starting .at -~~-e.
center of the CRT image:

for (xl•63,y1•23,x2•64,y2•24; xl >• ~. xl--,yl--,x2++,y2++)
box(l, xl, yl, x2, y2);

Try out the next example program:

#option inlib
main() ·
{

}

int xl,x2,yl,y2,t,tl;
for (xl•i, yl•i, x2•127, t • i; t <• 47 ; t++)

{ 1ine(l,xl,yl,x2,t);
1ine(~,xl,yl,x2,t);

}
for (y2•47,t • 127 ; t >• ~; t--)

{ line{l,xl,yl 1 t,y2);
1ine(S,xl,yl,t,y2);

}
exit(II);

.
INSTALLATION LIBRARY
• 4 - 26

.. ... , ... , .. '

/ ... ,,

\

-

L C L I B R A R I E S

PLOTTING CONTROL FUNCT~ONS
••••••••••••••••••••••••••

Two functions are provided that interface with and control certain
aspects of the pixel plotting functions. The "pmode()" function establishes
the CRT image area as one of the four quadrants in the cartesian coordinate
system. Another function, "ploc()", establishes the starting address of the
CRT image area. The syntax of these functions is:

•••

ploc(address);

retcod • pmode(quadrant) ;

address - specifies the starting address of the
plotting image area. Plotting functions use
the CRT address unless changed by pmode().

quadrant - sets the plotting image to quadrant <l-4> of
the x-y plane {initialized to quadrant 4}.
If quadrant•~. then the current quadrant
nunt>er in effect will be returned.

••••••••••••••••••••••••••~•••••••••••••••••••••••a•••••••~••••

The pmode() function is quite useful when your application concerns the
graphing of mathematical functions in the standard cartesian coordinate
system. Since most functions are graphed in the first quadrant, a •pmode(l)•
wi 11 estab hsh the image area for that purpose. Please note that- any
characters/graphics currently on the screen at the time the pmode() is gi1en
are left undisturbed - pmode{) does NOT refresh the current screen contents
to the revised quadrant but prepares the plotting functions for the new
quadrant.

•Quadrant• is used when changing the base origin of the plot image area
with the pmode() function. The image area is considered to represent only one
quadrant of the x-y plane in the cartesian coordinate system. The quadrants
are numbered as follows:

I
2 I 1

___ 010 ____ _

010
3 I 4

I

with the point 0,0 (the origin) appearing at the corner identified with the
letter 11011

• The standard quadrant used by the plott.ing functions will be
quadrant 4 unless changed with a pmode(} function call. Remember that the
direction away from the origin is always considered to be positive.

The. ploc{) function can be very powerful in creating dynamic displays.
~ By establishing an off-CRT buffer equal in length to the CRT image area, its

•
ll.Slil.t.lt.\lletl Llt'ilm.'f

4 - ;t7

LC LIBRA RI E~S

address can be passed via ploc() so that the plotting functions plot into the --.
buffer. The buffer could be subsequently moved to the CRT image area with the
move() function.)

RETURN CODES

Return codes are provided by the pmode() function where applicable.
Thes,~ codes are indicative of the fol lowing:

1-4 - Indicates the current quadrant in effect when a
pmode(~); function is invoked.

-1 • Returned if •quadrant• is not in the range <0-4>.

INSTALLATION LIBRARY
4 -·28

' .J

\

L C L I B R A R I E S

STRING FUNCTIONS

The most important bit of information to convey at this point concerning
the use of strings anq the C language, is that the language provides no
internal mechanics for dynamic string maintenance. Strings are generally
stored in character arrays - arrays are fixed in length at the time of their
declaration. Therefore, when you employ the string functions contained in
this installation library, remember that your application must provide the
proper array sizes to deal with the expected lengths of the strings. Where
string lengths are indeterminate at the time the application is coded but are
determined rather at run time, it may be prudent to consider testing the
length of a string operation result prior to actually performing the m,tended
operation to ensure that the operation will not exceed the array size of the
array receiving the. string result.

Another point worth remembering is that there is no upper limit on the
length of a string in the C language. A string is stored contiguously in
memory. The last character of the string is denoted by a null byte (hex zero)
at the end. Thus, any array used to store a string should be defined with a
size one byte greater in length than the maximum length of the string it is
to contain. This will allow for the storage·of;the terminating zero byte. For
instance, the string •Hello•, is stored as (shown in hex):

48 65 6C 6C 6F si,·

The string functions provided in the installation library correlate with
the string functions provided in various iq,lementations of Microsoft BASIC.
Again, remember that no dynamic string allocation/coq,ression takes place in
these routines.

The string functions, strcat(), strcmp(), strcpy(), and strlen() are
documented in this section. However, since these functions are considered to
be "standard c• functions, the routines are supplied in the standard library,
LC/LIB.

l~Sl~U .. TION tIBlt,i.:.RY
')q

LC LIBRARIES ..

The functions provided take the following format:

STRCAT()

-~-.. ----

strcat(dest, source);

retcod • strcmp(str1ng_l. str1ng__2)i

strcpy(dest, source);

retcod • strepl(source, dest, pos, count);

strept(dest, source, repeat);

retc:od • strf1nd(dest, source, pos);

str1~ht(dest, source. count);

strleft(dest, source, count);

retcod • strlen(source);

retcod • strmid(dest, source, pos, count);

count

dest

pos

source

repeat

- is the integer sub-string length.

- is a pointer to the destination string.

• starting index position or array subscript.

- is a pointer to the so-..rce string.

- a repetition counter.

The strcat() function will concatenate (append) the source string to
the destination string.

STRCW()

The function, strcmp{), will compare string_l to string_2. If the
string 1 would appear above string 2 in an ascending sorted list, the return
code wTll be negative. (<fl). If the two strings are equal, a zero (ii) will be
returned. A return code of a positive value greater than zero .(>fl) indicates
string 1 to be below string 2 in an ordered list. If you are unfamiliar with
how ASCII strings are "orcfered", perhaps a strong example will clarify this
discussion. The following is an ordered list of strings in ascending order:

INSTALLATION LIBRARY
•• 4-3{6

.J

a8bcde
abc
abed
jim
karl
rich
roy
this_is_a_long_string

L C L I B R A R I E S

Keep this ordered list in mind in the following examples. The statement:

if (strcrnp(•abc•,•aabcd•) < i)? pr1ntf(•above•) : pr1ntf(•below•);

should print the word, •below• since the string, •abc• is below the• string
•aabcd• in an ascendingly sorted list. The statement:

if (strcmp(•.abc•,•abcd•) < i)? printf(•above•) : printf(•below•);

should print th~ word, "above• since the string, •abc• is abov.e the string
11 abcd 11 in an ascendingly sorted list.

STRCPY()

The strcpy() function copies an image of the source string to the
destination ~tring buffer.

STREPL()

------·-·
The function, strepl{), replaces that portion of the destination string

starting at relative position •pos• and continuing for •count• characters
[the destination substring] with the source string. The arguments •pos• and
11 count11 control where and how much of the destination string is to be
replaced (i.e. what is the substring). The length of the replacement string
is the len~th of ~he source string. If •count• is zero (~}, then an insert
operation 1s performed without deleting any characters of the destination
string. If the source string is null (i.e. of zero length}, then only the
identified sub-string is deleted. If •dest+pos• exceeds the bounds of the
destination string, an out-of-range error will be returned and the string
operation will be aborted. Bear in mind that this function behaves
differently than the Microsoft BASIC MID$• function; however, the LC strepl(}
function performs as a string replacement algorithm should perform.

STREPT()

The strept() function replicates the source string into the destination
string the number of times indicated by •count•. Note that the replication
uses the entire source string and not just the first character. Thus a
statement such as:

strept(newstring,"*.",l~);

INSTALLATION LIBRARY
.(:, .. 31

LC LIBRARIES~

will create newstring equal to"*·*·*·*·*·*·*·*·*·*·•·

STRFINO()
----·---....

The function, strfind(), will search the destination string for the
first appearance of the source string. The destination string wil 1 be
searched s-tarting at the position •dest+pos •. If the source string is a nu 11
string, the value of •pos• will be returned. If the destination string is a
null string, a negative one (-1) will be returned. If the source string is
found in the destination string, its position· r~lative to the beginning of
the source string will be returned. If the source string is not found (i.e.
is not a sub-string of the destination), a negative one (-1) will be
returned.

STRIGHT()
-··----------

The stright() function will copy the rightmost •count• characters of the
5ource string (the sub-string) to the destination string. This is NOT an
append operation. The destination string is replaced with the sub-string. If
•count• is zero, the destination becomes a null string. If the •count• is
greater than the source string length, the entire source string fs copied.

STRLEFT()

The function, strleft(), will replace the destination string with the

leftmost •count• characters· of the source string. If count· is zero, the
destination becomes a null string. If the •count• is greater than the source
string length. the entire source string is copied.

STRLEN() ---·---·
The strlen() function returns the length of the source string.

STRMIO()
The function, strmid(), will replace the destination string with the

substring of •count• characters starting at position •source+pos• of the
source string. If •count• is zero, the• destination string will be null. Also,
if "source+pos• exceeds the bounds of the source string, an out-of-range
error (-1) will be returned and no string replacement will occur. •count• may
be greater than the length of •source• plus •pos•.

. INSTALLATION LIBRARY
~ 4 - 32

.,
I

·,J

L C L I B R A R I E S

\ STRING FUNCTION ARGUMENTS

The string functions specified above reference various a~gumen;s_
detailed as follows:

DEST

This represents ·a pointer to a character array. The argument that is
passed to a function is an address when the argument references an array;
therefore, a pointer is identified to the string functions by the very nature
of_ the character array declaration as in:

char s(81J

which establishes a character array capable of holding up to an sg-character
string.

SOURCE

This also represents a pointer to a string which is used as the •source•
string where the function requires more than one string in its arguments.

POS

This r~presents a starting position relative to the beginning of a
string. It is essentially used as an index or subscript into the character
array (S <• POS < n).

COUNT

This parameter is used, where required, to indicate the length of some
substring. In the case of strept(), it is used to specify the replication
quantity.

RETURN CODES

The return code of strcmp() is <0, 0, or >0 as noted above. The return
code of strlen() is the length of the target string. The functions strmid()
and strepl() will return a negative one (-1) if the arguments specify a
resulting position outside the range of the string. For instance:

if (strmid(s,•error•,6,3) •• -1) printf(•String error!•);

will result in the error message display since the position, 6, is not in the
range of the string, •error 0

• Th~ remaining string functions do not have
return codes.

INSTALLATION LIBRARY
4 - 33

L C LIBRARIES,,

CONTROL FUNCTIONS

The remaining functions
previously detailed perform
functions is as follows:

included in
mi see 11 aneous

f111(buffer, count, char); ..
retcod • freemem(); -
retcod • 1nkey(); -
retcod • 1nport(port); -
outport(port, value); -
retcod • c.urpos(); -
cursor(row,, col); -
date(s); -
time(s); -
cmd1(• coanand string•); -

·re~od•cmd(•comman,d string•); ...

retcod•cal 1 (address. ,regs) ; -

FILL{)

the installation library
tasks. The syntax of

zap a memory block

fetch memory size

scan the keyboard

input from a port

output to a port

fetch cursor position

reposition the cursor

fetch the system date

fetch the system ti-me

exit & c011111and DOS

coarmand DOS & return

generalized call

not
these

0

The function, fill(), will propagate the character, •char•, into the
memory •buffer• for •count• bytes. If •char• is passed as an integer value,
the low-order byte is used for the propagation. Note the·difference between
strept{) and fill{).

INKEY~) ---------
The .inkey() function makes a single scan of the keyboard and returns the

ASCII value of any depressed k~y. It will return a zero if no key is pressed.

INPORT

The function, inport{), returns as an integer, the value read from the
specified port.

• INSTALLATION LIBRARY
" 1 4' .. 34',,

- "
/

'---~_)

L C L I B R A R I E S

OUTPORT()

The outport(} function outputs the integer val~e to the port. The value
is truncated to its low-order byte.

CURPOS()

The current location of the cursor can be recovered with the curpos()
function. It returns the cursor position as an encoded value. The cursor row
is in the high-order byte while the cursor colu1111 occupies the low-0~9er byte
of the integer return code.

CURSOR() --------
To reposition the cursor,-use the cursor() function. The cursor 1s

re-positioned to the location identified by the arguments. If the position
that would result is not on the CRT screen, a range error (-1) is returned.
•x• must be in the range, <~-63> 1 while "y" ll'USt be in the range, <f-15>.

DATE() ------
The date() function will place the system date into the string •s•. The

format 1s MM/00/YY. The string should be defined as a character array of
minimum dimension 9.

TIME()

The time() function will place the system time into the string •s•. The
format is HH:t,tt:SS. The string should be defined as a character array of
minimum dimension 9.

CMDI()

The function, cmdi(), will invoke an exit from the•running LC program
and schedule the DOS execution of the c0111Dand contained in string •c011111and
string•. This could be used, for instance, to chain to another C program. The
cmdi() argument can be either a string defined in the function call or a
pointer to a character array which contains the co11111and string.

CMO()

If you want to execute a co11111and and return to your. LC program, use the
cmd() function. This function will pass the co11111and stored in string "co11111and
string• (or the string pointed to by a pointer argument) to the DOS C0111Dand
interpreter. Upon completion of the command, control will be returned to the
running LC program. Your program and variables will be saved during the

•

INSTALLATION LIBRARY
{~ -- 35

L C L I B R A R I E S ~

execution of the corrmand. If the executing conmand returns through @EXIT, a -.
re·turn code of zero (fa) will be retrieved. If the @ABORT exit is taken, the -~
return code generated will be obtained from the value contained in register
pair 11 HL 11

• If this value is ·positive (i.e. bit 15 reset}, it becomes the ·"
return code. If the value is negative {i.e. bit 15 set), then a negative one
(-1) will be returned.

CALL()

A generalized assembly language interface routine, call{), is available
in the installation library. 11Regs 11 is an integer array of dimension 6 which
should contain the quantities you want placed into the register pairs {AF,
BC, DE, HL, IX, and IY for regsC0J-regsC5] respectively} prior to calling the
routine at location •address". The "regs" array will be stuffed with ttkt
register contents that existed upon return from the called routine. The
return code will be zero(~) if the Z-flag is set upon return from the called
routine; otherwise, the return code is one (1). For more infonnation on the
use of call(), see the chapter on ADVANCED TOPICS.

FREEMEM()

Freemem() returns the maximum amount of memory which can be obtained
from alloc() or sbrk().

INSTALLATION LIBRARY
4 - 36

,I

\

\

L C L I B R A R I E S

LC FLOATING POINT LIBRARY
•••••••••••••••••••••••••

LC does not have floating point arithmetic built into the co~iler.
Thus, floating point expressions are not allowed in the nonnal manner.
However, this floating point function library allows the programmer to use
the floating point routines built into the TRS-8~ BASIC ROM. These functions
provide access to single and double precision math, · all the trigonometric
functions, random number generation,· and conversion to and from ASCII
strings.

Before any floating point math can be done, the function •fpinit()• must
be called. Fpinit{) initializes some data areas used by the TRS~~ ROM
floating point routines and sets up linkages for error recovery. The calling
of fp1n1t() and the automatic search of the floating point library 1s
accomplished when you add the compiler declaration:

#option FPLIB

to your C-language source program. This establishes the protocol necessary to
invoke an automatic search of the floating point library in the LC/ASM file
via the "*SEARCH FP/LIB• statement. The floating point initialization
function, fpinit{), is nonnally called automatically by LC's initialization
routines if •foption FPLIB• has been specified. However, if the user changes
or substitutes different initialization code, the user's program must call
fpinit().

Numbers may be stored in two different. formats: single or double
precision. Throughout the 'library routines two consistent abbreviations are
used: 11f• for floating point SINGLE precision, and "d" for floating point
DOUBLE Precision. Functions beginning with or containing either of these
abbreviations operate on the precision indicated. Single precision nunt>ers
are stored in four bytes; double precision numbers in eight bytes. The
programmer may declare either an integer array, or a character array to
allocate space for variables in their program. Both of the statements,

char fpnum[4J;
int fpnumC2J;

declare a 4-byte single precision field. Both of the statements,

char dpnumCBJ;
int dpnumC4J;

declare an 8-byte double precision field.

Take care in how you pass the parameters required by each function: THE
ADDRESS OF THE FIELDS ARE PASSED. Thus, if the declarations, "char
fpnum[4],dpnum[8]; 11

, are used when calling a floating point library routine,
the address of the first character (represented by the array name) should be
passed. For example:

atof(•J.1416•,fpnum);

FLOATING POINT LIBRARY
4. "']7

L C L I B RJ RI 'ES

atod(•J.1415926•,dpnum);

converts the strings containing PI to single and double prec1s1on and places
the results into memory at locations fpnum and dpnum, respectively.

If you are writing an assembly language routine that will interface to
the FP/LIB.routines, the assembler statement:

i_FPLIB DEFL -1

should appear in your code. This statement forces a search of FP /LIB in the
LC/ASM file.

lille wish to acknowledge our indebtedness to Insiders Software
Consultants. Inc. for their book, THE B@@K - ACCESSING THE TRS-80 ROM, Volutne
1. whi.ch provides vital information on interfacing to the ROM math routines.
Although the functions in FPLIB do not require any knowledge of how the BASIC
ROM ·Jn the TRS-8'1 functions, it can be helpful to have 0 THE B00K 11 for a
refer~nce to explain the details of floating point operation.

,• FLOATING POINT LIBRARY
4 ... ~i

--
I'

' ,

I
)"

L C L I B R A R I E S

FPINIT
••••••

This function is used to initialize interfacing to the ROM math routines
and force a search of the floating point library during the assembly of
LC/~M. Its syntax is:

•••
t I fp1n1to.

I - there are no arguments.
I
···•~1

This function is nonnally called automatically by an LC program which
has any module specifying •foption FPLIB•. In cases ~ere nonnal
initialization has been bypassed. a direct call to fpinit() by the user
program will be necessary since fpinit() MUST BE CALLED before using any of
the floating point functions in the library. It sets up certain data areas
used by the floating point ROM routines. and provides error recovery linkage.

\

A..OATlNG POUlT llRRAR.Y
/~ ~. 39

L C LIBRARIES-,

SINGLE PRECISION OPERATIONS

The following functions can be used to operate on single precision
fields (length 4). Their syntax is as follows:

retcod • fadd(vl. v2);

retcod • fsub(vl, v2);

retcod • fmul(vl. v2);

retcod • fdiv(vl. v2);

retcod • fibs(vl, v2);

retcod • fatn(vl. v2);

retcod • fc:mp(vl, v2);

retcod • fees(vl. v2);

retcod • fexp(vl, v2);

retcod • ff1x(vl. v2);

retcod • f1nt(vl, v2);

retcod • flog(vl. v2);

retcod • fra1se(vl, v2);

retcod • frnd(vl, v2);

retcod III fsgn(vl);

retcod • fs1n(vl, v2);

retcod • fsqr(vl, v2);

retcod • ftan(vl, v2);

vl • vl + v2

vl • vl - v2

vl • vl * v2

vl • vl / v2

yl • abs(v2)

vl • arctan{v2)

co""are vl to v2

vl • cos(v2)

vl • exp{v2)

vl • fix{v2)

vl • 1nt(v2)

vl • 1og(v2)

vl • vl tt v2

vl • rnd(v2)

retcod • sgn(vl)

vl • sin(v2)

vl • sqr(v2)

vl • tan{v2)

vl & v2 • are the address of single precision fields.

···~·-···············

· FLOATING POINT LIBRARY
4 - ~

---...

__)

L C L I B R A R I E S

These functions perfonn calculations on two single precision fields and
place the result in the first field specified ;in .the argument list (vl). In
the event of an error, vl is unchanged and can be examined to detennine the
cause of the error. Only SINGLE PRECISION variables can be handled properly
by these functions. Use the fonnat conversion functions descr1be-d later in
this ~ection to derive the proper precision. ·

RESULTS

In all of these functions, vl will contain the result of the calculation
if no error is detected. Any error (such as overflow, underflow, etc.) will
leave the vl argument unchanged. The argument •vz• is not altered in any way
by the functions. ~~

RETURN CODES

Each function has a return code of zero (0) if no errors occurred during
the operation; otherwise, it will return a LEVEL II BASIC error code. The
fcmp() function returns -1, ~. or +l depending on whether vl· is less than,
equal to, or greater than v2. Typical error codes would be:

2 - Syntax error
5 - Illegal function call [log(negative nuni>er)]
6 - Overflow

11 - D1v1s1on by zero·

•
FLOATING POINT LIBRARY

4 - 41

L C L I B R A R I E S -

DOUBLE PRECISION OPERATIONS -..,.

..
The following functions can be used to operate on double precision

fields (length 8). Their syntax is as follows:

retc:od • dadd (vl, v2); - vl • vl + v2

retcod • dsub(vl. v2 >. vl • vl - v2

retcQd • dlll.l 1 (vl, v2 >. vl • vl * v2

retcod • ddh(vl, v2); vl • vl I v2 ...-~

retcod • dabs(vl 11 v2); vl • abs(v2)

retcod • dcmp(vl 11 v2); cofl1)are vl to v2

retcod • df1x(vl, v2); vl • fix(v2)

retcod • dint(vl, v2); vl • 1nt(v2)

retcod • dsgn(vl); retcod • sgn(vl)

vl & v2 - are the address of double precision fields.

•••
These functions perform calculations on two double precision fields and

place , the result in the first field specified in the argument list (vl). In
the event of an error, vl is unchanged and can be examined to detennine the
cause of the error. Only DOUBLE PRECISION variables can be handled properly
by ·these functions. Use the format conversion functions described later in
this section to derive the proper precisiono

RESULTS

In all of these functions, vl will contain the result of the calculation

if no error is detected. Any error (such as overflow, underflow, etc.) will
leave the vl argument unchanged. The argument "v2• is not altered in any way
by the functions.

RETURN CODES

Each function has a return code of .zero (~) if no errors occurred during
the operation; otherwise, it will return a LEVEL II BASIC error code as
described in the list under SINGLE PRECISION. The dcmp() function returns -1,
i, or +l depending on whether vl is less than, equal to, or greater than v2 •

• FLOATING POINT LIBRARY
4 •. 42:

···)"·

,,

L C L I B R A R I E S

DATA CONVERSION FUNCTIONS

The need will arise to convert between double precision, single
precision, integer, and ASCII string. The following functions exist for this
purp.ose:

retcod • atod(str, dvar);

retcod • atof(str, fvar),

retcod • dtoa(dvar, str);

1ntva1 • dtoi(fvar);

retcod • dtof(dvar, fvar),

retcod • ftoa(fvar, str);

retcod • ftod(fvar, dvar);

retcod • itod(1var, dvar);

retcod • itof(ivar, fvar);

1ntva1 • fto1(fvar);
-

ASCII to doub 1 e

ASCII to single

doub 1 e to ASCII

double to integer

double to single

single to ASCII

single to double

integer to double

integer to single

single to integer

dvar - specifies a double precision field.

fvar

intval

1var

str

- specifies a single precision field.

- specifies the integer value returned.

- specifies an integer value.

- specifies a character string field.

I
I
I
I
rw
I
I
I
I
I

•••

The above conversions should be self-explanatory. The conversions not
shown above that convert ASCII to integer and vice versa, are part of the
stand·ard 1 ibrary and are documented in a preceeding section of the LC
LIBRARIES.

The C itoi() function has not been implemented, for obvious reasons •

•

FLOATING POINT LIBRARY
4 ~· 43

L C LIBRARIES-,

FLOATING POINT EXAMPLE

The following illustrates how the floating point library can be used in
an application. The example is derived from K&R, page 8.

/* fctab • print Fahrenheit-Celsius table
· for f • -8, 12, 32 •••• , 312 */

#include stdio/csh /* include standard header file*/
#option fplib /* force search of FPLIB */
main()
{

I*

*I

}

step, fahr; int lower, upper,
char celsiusC4J;
char fivedivnineC4J;
char temp(4J;

/* provide space for •float•*/
/* space to hold {5.liJ/9.li) */
/* temporary work space*/

char thirtytwoC4J;
char celsius_strCSJ;

/* space to hold 32.li */
/* space for ASCII result*/

lower• -8; /* lower limit of temp~rature table*/
upper• 312; /* upper limit*/
step• 2'1; -/* step size*/

Note that the calculation (5.li/9.li) was removed from the
body of the •while• loop to speed up calculations!

atof{ 115.li",f1vedivnine);
atof(•9.11 11

p temp);
fdiv(fivedivnine 1 temp);

/* float 5 */
/* float 9 */
/* calc 5.li/9.li */

atof(•J2.11•,thirtytwo)i
fahr • lower;

/* float 32.li */
/* initialize to starting value*/

while (fa.hr<• upper)
{

/* •fahr• & •upper• are integers*/

}

itof(fahr,celsius); /* float fahr */
fsub(celsius,thirtytwo); /* fahr - 32.li */
fmul(celsius, fivedivnine); /* {5.li/9/li)*(fahr-32.li) */
ftoa(celsius,celsius str); /* result to ASCII*/
printf("%-6.3d - S-8.8s\n",fahr,celsius str);
fahr +- step; /* note the assignment operator*/

.FLOATING POINT LIBRARY
4 ... 44

'

~-

ADVANCE. D TOP IC S

UTILIZING ASSEMBLY-TIME OPTIONS
·••····················••:a••····

: \II'.

LC p1·ovides certain options which can help the progranvner to generate
efficient programs. These options can be specified from the C source code b.y.
using the #option statement. The defaults to these options are set in the
file; LCMACS/ASM, so that no options .need be set, except when the default is
not the desired option. Since the #option statement generates a DEFL
statement in the assembly language source output, it can also be used to
control options in any user libraries or separately compiled modules. If used
to control options in separately compiled modules, the #option statement 1111st
be in a module which precedes the module whose option is to be specified.

Bear in mind that an option, once set, can be changed by another..-boption
statement. Thus, when assembling separately compiled modules, care should be
taken that a later module will not change the option set in the current
module, unless this is desired.

Options which are switches can be set to ON (-1) or OFF (0). These
specify whether or not some option is to be active. The constants ON and OFF
are defined in STDIO/CSH. Options which are not switches may be set to the
value desired by specifying the value in the #option statement.

ARGS

This option controls the generation of argc and argv, the command line
argument parsing. If the option is turned ON, the arguments are created and
placed on the stack so that the user may access them fiom main(). If turned
OFF, some savings in memory result, as no parsing of the command line is
done. ARGS defaults to ON. For more information on argc and argv, see K&R.

FIXBUFS

This option, if set to ON, will cause standard I/0 to pre-allocate all
buffers needed for standard I/0. This eliminates the need for the dynamic
memory functions to be loaded, and prevents users from locking themselves out
from further fopen() 1 s by allocating all of memory. This also guarantees that
the standard I/0 files can always be opened if the program is loaded. When
dynamic allocation (fixbufs is off) is active, a program, once loaded, may
not be able to allocate enough memory to open the standard files, resulting
in an error message and an abort.

FIXBUFS defaults to OFF.

FPLIB

Whenever the floating point library is to be accessed, this option MUST
be specified. It controls the initialization to the '8" ROM, as well as the
searching of the floating point library. For this reason, it must be included
in EVERY module which uses floating point. However, it must never be turned

·_.,,1 OFF by a module. This will result in undefined symbols at assemblt time if it

•
ASSEMBLY OPTI.OHS

5 ~ 1

A D Y A N C E D T O P I C. S

was previously turned ON. This option may be turned ON by the graphics
function in the standard library.

FPLIB. defaults to OFF, to avoid unnecessary linkage and searching.

KBECHO

In certain types of programs, such as screen and graphics editors, the
programmer may choose to disable the echoing of characters typed at the
keyboard. However, for most programs it is desirable to be able to see what
is being typed, even if standard output has been redirected. This option
allows this flexibility. When ON, KBECHO will cause the getc() function to
echo all characters input from the keyboard to the video. This holds true for
ANY file opened as u*KI", not just the standard input. ~1

KBECHO defaults to ON.

MAXFILES

This option requires a numeric argument · instead of OFF or ON, as it is
not a switch. The number will be used to set up contro1 storage for user
files. The maximum number of files which can be opened at the same time is
controlled by MAXFILES. The standard I/0 files are not counted in this
number. For example, if no user files were needed, then MAXFILES could be set
to zero. MAXFILES also controls the number of buffers pre-allocated when the :~
FlXBUFS option is ON. Thus, it is best to use MAXFILES when FIXBUFS is
specified to minimize the memory pre-allocated for file buffers.· y

MAXFILES defaults to allow the user eight (8) concurrently opened files.

REDIRECT --------
The REDIRECT switch controls the I/0 redirection feature of the standard

library. When REDIRECT is ON, standard files can be redirected by command
line specification. When OFF, no redirection processing takes place, and the
standard I/0 •files are set up as permanently attached to the keyboard and
screen. The REDIRECT switch overrides the ARGS .switch; if REDIRECT is ON,
ARGS 1s also forced to ON.

REDIRECT defaults to ON.

ZVM

The ZVAR switch can be used to invoke the initialization of all
variables to zero. If ZVAR is not optioned, only space will be reserved for
variables and their initial values will be undefined. Note that this switch
option may be turned off or on throughout the program.

ASSEMBLY OPTIONS
5 - 2

'

ADVANCED T 0~ IC S

SEPARATE COMPILATION
·········••=••······

LC supports separate compilation: functions and modules can be compiled
at different times, then assembled together to produce one program. This
facilitates the creation of compiled function libraries, and results in great
time .savings. COl'flllonly used functions can be compiled once, then only
assembled into new programs, without' recompiling. Large programs may be
segmented and each segment compiled separately, then assembled as a whole.
With the "extern" and "static" statements, the variables used in a module may
be specified as external or local.

When separately compiling modules which reference variables in other
modules, two approaches may be taken to supply declarations for the shared
variables. The •-global" option of LC may be turned off and on, so th'at only
one module actually defines the space for global variables. The other method,
which is the proper method and results in better structure ;~_programs, is to
define variables as ~tern when referenced by all but one of the modules.

USING THE -GLOBAL OPTION OF LC

All shared global declarations should be placed in a separate file, to
be #include'd by all modules which use them. Only one module can have +Global
specified when compiled; all other modules must be col11)iled .with -Globals in

---::--.. the LC c011111an9 line. It is usually convenient to use +Global when compiling
the module containing main(). This method is ·not normally reconmended. It is

-- only supplied as a convenience to those attempting to co~i le extremely large
programs already written without using extern and static. It is best to learn
to structure your functions into "units": modules containing a set of related
functions and their related internal and shared variables.

... /

USING EXTERN AND STATIC

When writing a large program, it is best to try and logically structure
your program into n~dules containing related functions with the data
structures they use within the same module. Any data structures or functions
in a module which need not be accessed by any external function can be
declared as "static". These static functions and variables wi-11 be unique in
name when assembled, and will not be accessible to other modules, so there
wi 11 be no conflicts in naming. Those data structures and functions declared
in the module whi.ch need to be accessed by functions in other modules should
be declared without any storage class. This causes these functions and data
structures to become "external", meaning that they are defined in this
module, and can be accessed from other modules. When using a function or data
structure declared in another module, the "extern" statement is used to
declare the type of the object. "extern" · is required for accessing variables
outside the module. However, a function may be used without an Mex~ernM; the
compiler will assume that the function returns an integer value. If any other
result is- returned, the function must be declared "extern" •

SEPARATE COMPILATION
5 - 3

A D Y A N C E D T O P I C S

ASSEMBLING SEPARATELY COft>ILED MODULES ---.
·······--------------~----------------

Each module must be read and assembled by EDAS in the same assembly. The
*GET assembler directive is used for this purpose. A file should be created
with *GET statements for all modules to be included in a program. This file
name is then-specified as the program name when assembling when using LC/ASM.
Here is an example of the GET file

(listing of MYPROG/ASM)

*GET MYMAIN
•GET MYFUNCS
*GET MORECODE

When assembling, load LC/ASM into ;DAS and then issue the following
<C>hange c011111and:

C/CPR06RAM/MYPR06/

to set up the *GET filename. Then assemble as you would normally.

SEPARATE COWILATION
5 - 4

/

/

ADVANCED TOP 'l CS

CREATING USER LIBRARIES
•••••••••••••••••••••••

We encourage LC users to create libraries of co11111only used functions.
This increases your productivity, since functions need not be rewritten for
each program. A library should contain functions which are self-contained;
i.e, they do not require the calling function to know about the library
module 1 s internal structure, and do not assume anything about data structures
that the calling function declares. In structured progranming lingo, library
functions should be data-coupled and functionally cohesive. Also, functions
should be tested and be well debugged before being placed in a function
1 ibrary. '

IN-LINE LIBRARIES

A user library can be created by appending LC output (assembly source)
files together. The assembly of each function in the library can be
controlled by the IFREF pseudo-op available in EDAS. When you reference a
user library function in your program, the subsequent assembly of the program
will cause the IFREF to be true for that function. Otherwise, if you have not
referenced {called) that function, IFREF is false, so the function is not
ass·embled. This method is si~le and does not require the use of the POS
utility. Its disadvantage is that the entire library must be read by EDAS
even if some of the modules do not get assembled. The *SEARCH. directive for
searching PDS libraries in EDAS is much faster for larger libraries.

The creation of an in-line (one after another) library should go
something like---this: The user types the following co11111ands:

EDAS YOU TYPE

--··-- -->
'4~1~0
0~11"
>
>

02430
!a2440
r,)245{1
>
>

04410
0442C,
>

I <ENTER>
IFREF FUNCA
<BREAK>
LFUNCA
IB
ENDIF
IFREF FUNCB
<BREAK>
LFUNCB
IB
ENDIF
<BREAK>
W USRLIB :1

. .
~

(NOW IN INSERT MODE)

(EXIT INPUT MODE)
(LOAD THE FIRST FUnCTION)
(INSERT TO BEGIN AFTER LAST)

(BREAK TO EXIT INPUT MOOE)
(LOAD THE SECOND FUNCT!ON)

(HIT BREAK TO EXIT INPUT MODE)
(SAVE THE LIBRARY ON DRIVE 1)

CREATING LIBRARIES
5 - 5

ADVANCED TOPI-CS

Any nurrt>er of functions can be added in this fashion, by appending to
the existing library. Each function could also be edited separately and then
appended together with the LOOS APPEND command (use the STRIP parameter of
APPEND to· remove the EOF byte (X'lA') from ulibraryu when you are appending
another module). This process generates a library which looks like this:

IFREF FUNCA
(F.IRST FUNCTION)

ENOIF
IFREF FUNCB

(SECOND FUNCTION)
ENOIF

(AND SO ON •••)

A different approach is needed when several functions have been coq>i~
together in the same LC invocation. A temporary label is needed to control
the invocati,t>n of t'le module .. This type of construct looks like this:

$INVOKE IT C11EFL e ;Default to no invocation
lFREF FUNCA

SINVQCE IT DEFL -1 ;Get it
- El~DIF

ffREF FUNCB
$INVOKE IT OIEFL •l ;Get it

- ElmIF
ItREF FUNCC

$INVOKE IT O£\FL •l ;Get 1 t
- ENOIF

; How 1nvo~e the module if needed
IF $INVOKE IT

(THE MODULE G,0ES HERt)
ENO.IF

With the construct shown above. the module will be assembled if any of
the functions a.re referenced. It is better to separate the functions into
separate modules if pos;~ib le ..

An in-line 11brar'y is searched by EDAS sequentially from beginning· to
end. Therefore the orde1r in which functions are placed in the library becomes
important. If a function in the library is called by another function within·
the library, then the caJling function must appear first. This is because the
IFREF for the called function will not be true until the calling function is
assenilled. So the gener,•l rule is: Calling functions first, called functions
last.

PDS LIBRAIIES

------·-------
The l·Jbraries which ,come with the LC compiler are actually Partitioned

O4lta Sets CPDS). A POS ·)s a file which is partitioned into individual
members .. The Partitioned Da1ta Set (POS) utility, available from MISOSYS, is

• CREATING LIBRARIES
• 5 - 6

)'

.,J,, .

.~.

ADVANCED TOP I-CS

· used to create and maintain POS libraries. POS members may be executable
commands, data files, source files, etc. In the case of the LC libraries each
POS men~er is an assembly source module. EOAS searches POS libraries by
performing an IFREF check on each member name. Only those members which have
been referenced but not as yet defined are read and assembled by EOAS. For
the rest of this discussion we shalJ assume the re~der has a working
knowledge of the POS utility.

The POS(BUILD) c011111and is used to create and initialize a POS library.
Once created, modules can be appended to the library using the PDS(APPEND)
command. The function name in a module is limited to eight characters, with
no underline allowed. When the module contains on·ly one function, it is
convenient to have the module name be the same as the function name. In this
case the command:

pds(append) myfunc/as11 ray/11b.pds . .
is sufficient to add the function myfunc()
it is necessary to specify the password when
to a POS. The (data) parameter tells POS that
program

to the library my/lib. Note that
issuing a command which writes
the member is not an executable

When a module contains more than one function it becomes necessary to
use a POS map file. The entry point specified in the map file is not
important. The names of al 1 the functions in the module which are to be
accessible when searching must be placed on one line in th~ map file. For
example, if a module file MYMOD/ASM contains three functions, funcl, func2,
and func3, then the map file, M1MOD/MAP, would look like this:

lll,r,nod/asm,funcl,8,func2,9,func3,8

and the command to append the module to the library, MY/LIB:

pds(a) mymod my/lib (map)

PCS will assume that "mymod" has an extension of /MAP. The (map)
parameter tells pds that MYMOD/MAP has the information needed to append the
module.

Unlike in-line libraries, the order in which members are appended to a
PDS library does not affect the functioning of the library. EDAS continues to
search the library until no further references can be satisfied by the
library.· Thus, members may be appended in any order, purged and reappended,
etc.

CREATING LIBRARIES
5 - 7

ADY AN CED TOP I c·s

LC ASSEMBLY LANGUAGE OUTPUT STRUCTURE

LC generates a rather unusual assembly output file. LC depends on
certain mac.ro' s in the file, LCMACS/ASM, which maintain and provide access to
two separate program counters. These macros allow LC to declare variables and
define strings in the middle of a function, without interrupting the actual
generation· of code to perform the function. The macros also cause all
variables and strings to be placed together at the end of the program. These
macros MUST BE USED if you are interfacing (with assembly language) to the
variables generated in a module compiled by LC~ Failure to access variables
using the macros will result in the wrong address being used.

LC PROGRAM MEMORY MAP
•••••••••••••••••••••

LC programs, once assembled, have the fo11owing structure in memory:

•••
I @START (usually 5201H)
I LC programs begin execution here.
I~-~------~---•• LC program initialization in LC/ASM.
---LC-generated modules, user assembly language

modules.

-----------~------~------------~---------------------------User 1 ibr.:sry functions.
. .

-------~~-----------~--~-------~--------~------------------· All library functions from LC/LIB, FP/LIB,
IN/LIB

SSSTORG

Program vari~les and strings generated with LC
macros.

iPROGENO .

·········~--~--·--~--

iLOMEM

Memory allocated by sbrk(). In use by the program
or maintained by alloc() and free().

--------------~-------------·~-------------------~---·-----· Unused memory available from alloc(} or sbrk().
SP-lli24

.......... ·---~-----------~--------------------------------LC program stack - local variables stored here.
1~24 bytes of unused space. LC always reserves lK
for the program stack when requests for dynamic
dynamic allocation of memory are made.

HIGHS - Z-8~ SP ·
•••

4 • A.SM OUTPUT STRUCTURE
5 ... 8

-,,._
. \

~--

ADVANCED TOP I,C S

LC MACROS
······••=

It is important to understand how to use macros in order to directly
interface to variables declared by LC programs. However, it is not necessary
if you are writing a function which will not access LC-declared variables.
For· more information on the use of the EDAS macro capability, see chapter six
of the EDAS manual. ·

The macros in LCMACS/ASM are as follows:

$SORG
•me•••

$SORG switches the EDAS program counter to the variable storage area.
The current executable program counter is saved in $$TEMP, to be restored by
a $PORG macro. Anything assembled by EDAS after $SORG will be placed at the
end of the program, past all code assembled in the SPORG {normal) sections.

SPORG

This macro recovers the original program counter saved by the $SORG
macro. The variable storage program counter is also saved, so that the next
$SORG will continue where the last left off. WARNING: a SPORG llllSt follow a
$SORG only, not another $PORG. The proper program counter wi-11 be lost 1f a
SPORG is done when not in the variable storage area •

$VAR IN».tE,#SIZE
---------------~---

All external variables are declared by LC using the $VAR macro. A data
area will be defined which is designated by the #NAME given, with the #SIZE
given. Any references made to variables declared with the $VAR macro are made
using the following macros:

SLSTR

This macro is used to prepare for the definition of a string. The HL
register pair is loaded with the current storage program counter, and the
EDAS program counter is switched to the storage area counter. The program
counter 1111st be in the program area before the SLSTR macro is used.

$LOS #NAME

This macro gets the address of the variable #NAME into the HL register
pair.

ASM OUTPUT STRUCTURE
5 ,» 9

A D V A N C E D T O P I ' S

$GETB #NAME

This macro fetches the contents of the character variable #NAME into
the HL register pair. The H register will be loaded with zero, and L will
contain the character.

SGETW #NAME

The $GETW macro fetches the two-byte integer stored at #NAME into the HL
register.

$HS INUM

The SHS macro points HL to the value •SP+NUM• (SP refers to the stack

pointer). It 1s used to obtain the address of a local variable.

$PUTB #t4AME
....................

ihe SPUiB macro writes the character in the L register into character
variable at #NAME.

$PUTW HWtE
)

-------·------
The SPUTW macro will write the integer value in HI. into ,the two-byte

integer variable 4t INAME.

ASH OUTPUT STRUCTURE
5 - 111

... Y

A D V A N C E D T o'' P I C S

LC IDENTIFIER OUTPUT

·················•·=
LC makes extensive use of the "*MOO" directive in EDAS. This EDAS

assembler directive causes a unique one or two character alphabetic string to
be assigned to a GET/SEARCH module. Th,s replacement string is incremented
each.time another *MOO directive is encountered. Every occijrance of'?' in a
label is then replaced with the module's unique replacement string. For more
information on the *MOO directiv.e, see chapter five in your EDAS manual. The
following table outlines the format of label generation from LC:

•••

IDENTIFIER CLASS

Temporary labels

External identifiers
-longer than 3 characters
-3 characters or less

Static identifiers
-external to functions
-internal to functions

Goto 1 abe ls

LC OUTPUT

$?#

NAME
NAME
NAM$

NAME@?
NAME@?*

NAMES?*
~------------------------~-----------------------------NAME, NAM

I

*

LC identifier, 1 to 8 characters,
upper case

The temporary label nuni:>er

The function number (within the module)

j
I
I
I
I
I
I
I
I
I
I

LC generates labels in this fashion so that static variables, external
variables, and labels will not conflict with each other. Thus, there can be
an external variable named x, a module static named x in two different
modules, a static named x in two different functions in the same module, and
a (goto) label named x, all within the same program, with no conflicts. The
'?' module substitution character in the labels · will make labels unique
within each module, while the function nuni:>er appended to labels will mak·e
labels unique within each function. A dollar sign, 'S', is appended to
external labels which are three characters long or less. This prevents
possible conflicts with register names and logical operators in EDAS.

Temporary labels are used by LC to implement conditional statements and
operators, and loops. They are assigned numbers starting at 1, and
incrementing by 1. The dollar sign, '$', as the first character allows you to
suppress all temporary labels from your symbol table output by using the -SL
switch of the EDAS <A>ssent>le conmand. The'?' makes tefll)orary labeis unique

_./ within each module.

ASM OUTPUT SlRUCTURE
5 - ll

A D Y A N C E O T O P I C S

RUN-TIM£ SUBROUTINES -~~
••••••••••••••••••••

A program generated by LC performs logical, arithmetic, and data
manipulati~n operations through two registers: the HL and DE register pairs.
HL is the primary register; OE is the secondary register. The stack is used
extensively to store intermediate results as expressions ,are evaluated ..
Certain operations are performed using subroutines in LC/LIB. These
s,.abroutines are:

~--·· SUBROUTINE

@GINT
@PINT
@OR
@XOR
@ANO
@EQ
@NE
iGT
01.T
@LE
@GE
@LIGE
iULT
@UGT
@ULE
@UCMP .
iASR
@ASL
@NEG
@COM
@NQT
iMLU.T
@DIV

OPERATION PERFORMED
···········---------------------------

I . I

get integer in memory at (HL) into HL
put integer in HL into memory at (DE)
bitwise OR of OE with HL
bitwise exclusive OR of DE with HL

'bitwise ANO of DE with HL
returns OE•• HL
returns DE!• HL
returns OE > HL
returns DE < HL
'returns DE <• HL
returns OE >• HL
returns unsigned DE>• HL
returns unsigned DE< HL
returns unsigned DE> HL
returns unsigned DE<• HL
unsigned c0111>are OE-HL non-destructively
arithmetic shift right of DE by HL
arithmetic shift left of DE by HL
returns two's complement of HL
returns one's complement of HL
re.t.urns logical NOT qf HL
Ullltiply D[by HL to HL
divide DE by HL, returns remainder in
DE, quotient 1n HL ·

1
I
I
I
I
I
I
I
I

······~·-··

• ASH OUTPUT STIUJCTIJRE
I 5 - 12

/

i
:.:.✓

A D V A N C E D T O P I C S

ASSEMBLY LANGUAGE INTERFACING
············•·=••=••·········

While it is possible to insert assembly language source code directly
into your LC program using the #asm-#endasm construct, it is rruch cleaner to
int~rface by placing your assembly language code into a separate module. This
keeps all the non-portable code separate from the portable LC code. It is
best to call assembly language as a· function, rather than including it
directly into an LC function by mixing C and assembly source code.

REGISTER USAGE

All registers are available for use by the assembly language function.
The only stipulation is that the stack pointer IIIJSt be returned in the same
condition as it was upon entry.

ARGUMENT PASSING

LC passes arguments on the Z-80 machine stack. Each argument is pushed
onto the stack as a two-byte value. Arguments are pushed in order opposite of
the order they are specified in the function call. Here is the assembly
language which LC generates to perform a function call:

.
• x•func(a,b,c);

LO HL,(CS)
PUSH HL
LO HL, {BS)
PUSH HL
LO HL, {AS)
PUSH HL
CALL FUNC

This process generates the following structure on the Z-8~ machine
stack:

{SP+6) ••>
{SP+4) ••>
{SP+2) ••>
{SP+e) ->

<c>

<a>
return address

That is how the arguments appear to the cal led function when first entered.
There are several methods which can be used within the called function to
obtain the arguments. The simplest method is to POP each argument off the
stack. This is not suitable for large nuni:>ers of arguments, but most
efficient for 3 operands or less. Using the example above, the arguments
could be retrieved as follows:

FUNC POP
POP
POP

•

AF
BC
DE

;return address saved
;argument <a> in BC
;argument in DE

ASM liTERfAClN.6
c:; - 1.1

POP
PUSH
PUSH
PUSH
PUSH

HL
HL
OE
BC
AF

ADVANCED TOPI'C.S

;argument <c> in HL
;restore argument <c>
; u u
; .. u <a>
;stack is same as at entry

Note that the stack is returned to its original condition •. It is always
important· to keep track of the· stack pointer. However, the contents of the
stack, i.e., the arguments, are •owned• by the called function and can be
u5ed like any local variable. A better method to use when dealing with large
numbers of arguments is shown below: ·

LO
ADD
CALL

HL,2
HL,SP
@GINT

;offset to <a>
;HL • address of <a>
;get contents of <a>

iGINT is a run-time library function wh1ch gets the integer pointed to
by HL into HL. See the previous section on LC assembly output structure for
more information. ,

Another method is to utilize the Z-8~ index registers. The stack pointer
must be placed into the index register first; then index offset values can be

. used to get and store the arguments:

LO
ADD
LO
LO

IX,S
IX,SP
L,(IX+2)
H,(IX+3)

;get SP into IX
;get LSbyte of a
;get MSbyte of a

If 111 argument is intended to be a character variable, only. the least
significant byte (LSbyte) is.needed, so a single indexed load is used.

LABELS AND CONSTANTS
~-----~----------~-·

It is strongly reconanended that the a~sembly language progranmer _utilize
the EDAS 11rMOD directive to assure that labels do not duplicate those in other
modules. The following method will assure that you will not have this
problem:

'irfitOO
VARl@? OW ~
EQU291 EQU 2
FUNC ; your function h~re •••

• • •
JR FUNC2i?
• • •

FUNC291

;go to temporary label

,temporary label

By appending the @?, your label becomes unique from all others in an
assembly, assuming that you placed a "'MOD directive at the beginning of the
module. Keep in mind, however, that other modules cannot get to these types
of variables, since the 1?1 h substitutE}d a.t assembly time. Labels which

~· A.SM INTERFACIK6
S ·•· 1li1

I .,,_ /

--._ - \

- _./

,-

ADVANCED· TOP IC S

must be accessed by other assembly language modules should be defined without
the'?' in the label (i.e. to keep them global).

If a variable must be accessed by an LC module which is to be defined by
the assembly module, then the macros described earlier in this section must
be used to declare the variable, and to access it_ within the assembly
language module. Examine the macros in LCMACS/ASM to see how they work, for
additional interfacing ideas.

RETURNING A VALUE
•••••••••••••••••

LC programs use the HL register pair for a 16-bit accumulator. MY value
to be returned by a called function must be placed in HL before returning to
the calling function. Take care that a full 16-bit value is returned. If a
character or 8-bit value is being returned, then H should be loaded with
zero. If a true or false indication is to be returned, HL should be set to 1
or 0, accordingly.

CALLING MACHINE LANGUAGE ROUTINES

The call() function has been provided in the installation library to
standardize the invocation of machine language routines. The use of call() is
documented on page 4-36 and illustrated in the program, syscall, which may be
found in appendix D.

ASH INTERFACING
5 - 15

A D V A It C E D T O P I C S

WHEN THINGS GO WRONG... --...
•••••••••••••••••••••••

V ;

C 1s a language which offers great flexibility, but not without a pr-ice._ __ -------------­
The price of C's freedom is the programmer's ability to make catastrophic
errors with ease. The programmer is not protected from himself when using LC.
Your best protection is to carefully check your programs when -you write them,
for any evident errors before you try to run them. Of course, any time you
test a program you should not have any disks 1" your drives that you would
care about if they were suddenly erased. This is not to say that you
shouldn't experiment; quite the contrary. However, always be prepared for the
worst.

With LC, you have an advantage over other compilers. LC generates an
assembly language source file. You can debug the program witholit
second-guessing the compiler, or having to disassemble the compiled output.
The modularity of the program also helps, since there are clear interfaces
(functions) to breakpoint at. It would be helpful. though not essential, for
the programmer to have familiarity with the z-as instruction set and with the
debug facility of ~DOS.

COMPILATION ERRORS
······~-----------

LC generates an error message whenever it finds something in the input
f11e that cannot be recognized, or that doesn't fit the syntax of the C
language. There are also some limitations in the -LC implementation which can
cause. LC error messages to appear. When LC outputs an error message, it will
print the line in error and point to the particular character where the error
was recognized. The actual programming error is likely to be earlier in the
program. depending on the type of error.

Some errors may not be detected until many lines later. For exaq,le, if
a closing brace is missing in the input file, LC will not be able to detect
the error until the next function declaration, which will then be flagged as
a function call without an ending semicolon. This is because LC thinks the
previous function has not been completed. Simil1rly1 1f an opening brace is
missing, LC wi 11 not find 0!.it unti 1 the last closing brace is encountered,
with no match.

In the appendix of this manual 1s a list of the error messages which LC
can generate. and some likely causes for each. Most errors are usually
typographical. but the user should be well versed in the C language and the
LC implementation. Learn where to find information regarding syntax and
capabilities of the language. The language definition chapter of this manual
and the appendix of the K&R text are good places to look when not sure of
syntax.

A .. WHEN THlffGS GO WRONG
S: .. 1i

A D V A N C E D T O P I C S

ASSEMBLY .ERRORS

There are few assembly errors which can occur if you assemble your
programs using LC/ASM and GET your compiled C modules. Your safest bet is to
use LC/JCL when compiling and assembling. If you have· written portions of
your program in assembly language you may have a few more errors to deal
with. Please read the previous section on assembly language interfacing for
hints in debugging your assembly language.

If you are creating a CMD file directly from the LC/JCL f1le, you will
be aware of an asseni>ly error if the JCL aborts from EDAS. To specifically
isolate the assembly error, you will need to execute EDAS, load the~~LC/ASM
file, globally change CPROGRAM to the name of your C compiled output program,
then assemble with the -WE switch. One of the following errors should
prevail.

UNDEFINED SYMBOL - A symbol which you referenced in your program was
undefined in any module in your program. This can be caused by omitting the
definition, misspelling the identifier, or defining them incorrectly. A look
at the. name which is undefined wi 11 give you a clue as to which situation was
the cause. Misspelling should be obvious. Look out for upper-case versus
lower-case names. Remember that LC is case sensitive.

MULTIPLE DEFINITION - A synt,ol was defined twice with the same name. If
you are assembling separately compiled or user library functions, you may
have named two external variables or functions the same. To correct this,

:::.:-- make one or both of the identifiers static within the module. If separate
compilation -is not being used, you have defined two external objects in your
program with the same name.

It is useful to familiarize yourself with the previous section on LC
assembly language output structure. Also, if you are assembling separately
compiled or user library functions, a good understanding of the •extern•
statement and external versus static variables is essential. Refer to the
section on storage classes in Chapter 2, LC Language Definition.

-~tit~ l'rilJ~~'S 'GO ~'RO~"G
)7

J ...

,,

" ,I

.... ":,

. ,.

A P P E N D I X 0 P E R A T O R S

UNARY OPERATORS
••••••••••••a•:a

*
&

-
++

........................ ~ indi~ection (object at}
pointer (address of} ~
negation ••
logical NOT •••••••••••••••••••••••••••••••••••••
one's complement ••••••••••••••••••••••••••••••••
increment •••••••••••••••••••••••••••••••••••••••
decrement •••••••••••••••••••••••••••••••••••••••

BINARY OPERATORS

* I
s
+

<<
>>
<
>
<•
>• -I•
' ..
I
&la
11
1
•

.
•

multiplication • e • • • • • • o • • • •

division ••
modulus (remainder) •••••••••••••••••••••••••••••

•• addition
subtraction
shift left •••••••••••••••••••••••••••• e •••••••••

shift right •••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••• less than

greater than ••••••••••••••••••••••••••••••••••••
less than or equal to •••••••••••••••••o•••••••••
greater than or equal to ••••••••••••••••••••••••
equal to ••

to •••••••••••••••••••••••••••••••••••• not equal
bitwise AND o••••••••••••••••••••••••••••••••••••
bitwise exclusive OR
bitwise inclusive OR

••••••••••••••••••••••••••••
o • • • 9 !' 0 e • e e • • • • e • e • e e O O e O O 9 0

logical AND
logical OR ·······,······~~-···················· If ,: • •/ \: ~ ~ ,.(, •

••••••••••••••••••••••••••••••••••••••
condi ti ona l C if-tllen-else) _ ._ ••• ~ •• _ •••••••••••••••
assignment • •••••••••••••••••••••••••••••••••••••

C+•, -•,*•,/a,%•,<<•,>>•, &a, ·•, l•J •••

•

LC OPERATORS
ft. ~· 1

2-17
2-18
2-18
2-18
2-18
2-18
2-18

.,.~
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-22
2-22
2-22
2-22
2-22
2-2r--
2-23

...

APPENor·x 0 P E R A T O R S

ptr • alloc(nbytes
retcod • atod(str,
retcod • atof(str,
int• atoi(decs);

}; ••••••••••••••••••••••••••••••••
dvar) ;
fvar) ;

••••••••••••••••••••••••••• ~
........••.............•...•.......

retcod • box(funcod, xl, yl, x2, y2); •••••••••••••••
retcod • call(address, regs); •••••••••••••••••••••••
retcod • circle(funcod, xl, yl, rl); ••••••••••••••••
retcod • cmd("conmand string"); •••••••••••••••••••••
cmdi(•comnand string•); •••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••• retcod • curpos();
cursor(row, col);
retcod • dabs(vl, v2);
retcod • dadd(vl, vi);

•••••••••••••••••••••••••••••••••••

················~·············
••••••••••••••••••••••••••••••

• 0 •• date(s) ;
retcod • dcmp(
retcod • dd1v(
retcod • df1x(
retcod • dint(
retcod • dmu 1 (
retcod • dsgn(
retcod • dsub(
retcod • dtoa(
intval • dto1 {
retcod • dtof(
exit{ code) ;

v2
v2
v2
v2

vl,
vl,
vl,
vl,
vl, v2
vl) ;

);
);
);
);
);

••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••
••••••••• !Ill ••••••••••••••••••••

••••••••••••••••••••••••••••••
vl, v2) ;
dvar, str); •••••••••••••••••••••••••••
fvar) ; ••••••••••••••••••••••••••••••••
dvar, fvar); ••••••••••••••••••••••••••

•••

····························~· ••••••••••••••••••••••••••••••
•••••••••••••••••••••o••••••••

••••••••••••••••••••••••••••••••

retcod • fabs(vl, v2);
retcod • fadd(vl, v2);
retcod • fatn(vl, v2);
retcod • fclose(fp);
retcod • fcmp(vl, v2);
retcod • fcos(vl, v2);
retcod • fd1v(vl, v2);
retcod • fexp(vl, v2);
retcod • ff1x(vl, v2);

••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••

eofind • fgets(buf, max, fd); •••••••••••••••••••••••
••••••••••••••••••••••••••

••••••••••••••••••••••••••••••
fill(buffer, count, char);
retcod • fint(vl, v2);
retcod • flog(vl, v2);
retcod • fmul(vl, v2);

••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••

fp • fopen(fspec, mode); ••••••••••••••••••••••••••••
fp1n1t(); •••
retcod • fra1se(vl, v2); ••••••••••••••••••••••••••••
retcod • fprintf(fp, control, argl, arg2, •••); •••••
retcod • fputs(string, fp); •••••••••••••••••••••••••
free(ptr); ••
retcod • freemeia(); •••••••••••••••••••••••••••••••••••
retcod • frnd(vl, v2);
retcod • fs~n(vl);

.............................. retcod • fs1n(vl, v2);
retcod • fsqr(vl, v2 };
retcod • fsub(vl, v2);
retcod • ftan(vl, v2);
retcod • ftoa(fvar, str);
retcod • ftod(fvar, dvar);

..............................-
LIBRARY FUMCTIOKS a ,

4-02
4.43-
4-43
4~03
4.;25
4-36
4-25
4-35
.4-35
4-35
4-35
4-42
4-42
4-35
4-42
4-42
4-42
4-42
4-42
4-42
4-42
4-43
4-43
4.43·
4-04
4-40
4-40
4-40
4-05
4-40
4-40
4-4(,J
4-40
4-40
4-06
4-34
4-40
4-40
4-40
4-07
4-39
4-4(1
4-08
4-09
4-111
4-34
4-4(,J
4-4(,J
4-4(,J
4-4(,J
4-4(,J
4-4(,J
4-43
4-43

...,

A P P E N D I X ... OPERATORS

1ntva1 • fto1(fvar); ·•···••·••••••••••••·•••••••••••
C • getc(fp); •••••••••••••••••••••••••••••••••••••••
c • getchar(); ·········••······••········•··••·•··•~·· eofind • gets(buffer); ·•··•··••··••••·•·••••••••••••
retcod • 1nkey(); •••••••••••••••••••••••••••••••••••••
retcod a 1nport(port); OOOOCOOOOOOOl>00000000QOOOOOOG,O

r.etcod • isalpha(char);
retcod • isd1git(char);
retcod • 1s1ower(char);

••• ct ••••••••••••••••••••• IJ •••

•••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••

retcod • 1supper(char); ···············••·••••••·•·•• itoa(int, decs); ~ ••••••••••••••
retcod • itod(ivar, dvar); ••··•···•••·••··••••••••••
retcod • 1tof(. ivar, fvar); ••••••••••••••••••••••••••

4-43
4-11
4-12
4-13
4.34
4-34
4-15
4-15
4-15
4-15
4-S3
4-43
4 ... 43

1tox(int, hexs); ••••••••••••••••••••••o••••••••••••• 4-03
retcod • line(func~d, xl, yl, xz. y2); ····•••••·•··• 4-25
move(pfrom, pto, len); •••••••••••••••••••••••••••••• 4-14
outport(port, value); ••••••••••••• ; ••••••••••••••••• 4-35
retcod • pixel(funcod, x. y); ··•••·••·•••••••••••••· 4-23
ploc(address); •••••••••••••••••••••••••••••••••••••• 4-27
retcod • paode(quadrant); ····•·••···•·•••••••••••··• 4-27
retcod • point(x, y); ••••••••••••••••••••••••••••••• 4-23
printf(control, argl, arg2, •••); •••••••••••••••••••• 4-16
cret • putc(c, fd); •••············••·•··•···•••·•·•• 4-17 cret • putchar(c); •••••••••••••••••••••••••••••••••• 4-18
retcod • puts(string); •••••••••••••••••••••••••••••• --4-19
reset(x, y); •• 4-23
ptr • sbrk(nbytes); •••·••••·•·••···•···••·••·••··••• 4-2i
set(x. y) ; ••••• qJ, ••••• QI, o ••••••••••••••••••••••••••••• • 4-23
stn::at(dest, source); -~·······•······•··•••·•••·•·•• 4-li
retcod • straip(source, dest); ••·•·•••·••••••••·•··• 4.3g
stn::py(dest, source); •··········••····•·•·•••••••••• 4-31
retcod • strepl(source, dest, pos, count); •••·•·•·•• 4-31
strept(dest, source, repeat); ••••• ~ ••••••••••••••••• 4-31
retcod • strlind(dest, source, pos); •••••••••••••••• 4-32
str1ght(dest, source, count); •·•·····•·•·••·•••····• 4-32
strleft(dest, source, count); •••••·•·••••••••••••••• 4-32
retcod • strlen(source); ·······••····•·••••••••••·•• 4•32
retcod • stnaid(dest, source. pos, count), •••••••• ~ •• 4-32
t1ae(s > : •••••••••••••••• · ••••••• o • 4-35
c • tolower(char); ••·••··•·••·••••••••••••·••••••••• 4-21
c II toupper(char) ; • • • • • • • • • • •.• 4-21
int• xtoi(hexs); ··•·•········••··•·••••···••••••·•• 4-13

LlBStMY FUNCTIONS
B ·~ 2

I

-.. ~

A P P E N D I X - E R R O R M E S S A 6 E S

LC ERROR MESSAGES
•••••••••••••••••

64> "already defined" - The object being declared has already ~een defined
in the module.

65> "argument error" - The expression just processed caused LC to input the
next line before the function call was · completely processed. See the "split
function ·call" error for additional information.

66> "bad label" - The label specified in a "goto• statement was not a valid
LC identifier.

67> •expected co1m1a• - The context of the input required a conma, ~but none
was found.

68> •function not declared" - The context of the input demanded that a
function be declared, i.e., ~he input did not match anything which could be a
compiler directive or a variable declaration, so it was assumed that a
function wasbeing declared.

69> "global symbol table overflow" - LC ran out of global syni:)ol table
space. Either decrease the amount of memory reserved in high memory (see "not
enough memory• error) or split the module being compiled into ·smaller modules
with fewer external variables.

7~> "illegal address" - the"&" (address of) operator was used with an
expression which was not an object in memory.

71> "illegal argument name• - The' argument name is not a valid LC
identifier.

72> "illegal identifier" - The input was interpreted as an identifier, but
did not conform to LC's rules f9r identifiers.

73> "input file open failure" - An input file could not be opened
successfully.

74> "invalid expression" - The input could not be recognized as an
expression when the context of the program required an expression.

75> "invalid option name" - The name given in a "#option" compiler directive
was not a valid LC identifier.

76> "invalid option value" - The value given in the "#option" coq:,iler
directive was not a character literal or numeric constant • •
77> "local symbol table overflow" - LC ran out of local syni:)ol table space.
Either decrease the amount of memory reserved in high memory (see "not enough
memory" error) or decrease the number of local variables in the function.

78> "line too-long" - The input line exceeded the maximum input line size
allowed by LC (128 characters/line).

LC ERROR MESSAGES
C - 1

~,
A P P E N D I X • E R R O R M E S S A 6 E S

7~> "macro table full• - The current "#define• caused the table space
allocated by LC to be exceeded. Either decrease.the amount of memory reserved
in high memory (see •not enough memory" error) or decrease the nuniler of
"#define• statements in the module.

BS> •missing
operator. •

•:•• • A •1• operator was found without ,a matching

81> •missing apostrophe• • A character 11 teral was not ended with an
apostrophe. LC does not allow a character literal to be continued on another
line ·

82> •missing bracket• - The ending •bracket• character shown in
message was expected, but was not found.

the error
~

83> •missing quote• - A string literal did not have an ending quote('"').
String~ cannot be continued on another line. ·

84> •missing semicolon• - No semicolon was found at the end of a statement.
The•;• character is the statement terminator, and must be placed at the end
of a siq,le statement.

85> •must be constant• - The size of an array must be a numeric constant.

86> •must be extern• - a function -declaration was encountered.past a co11111a
in an external (but not •extern•) declaration statement. This context ill1)1ies
that the function is of storage class, •extern•, but this was not the class
of the declaration statement. ·

87> •wst be lvalue• - The expression being processed specifies that a value
be placed into an object, but no object which could be stored into was found.

88> •negative size illegal• - An array with a negative size was declared.
The array size is made positive before being used.

89> •nested too deep - ignored 11
-. The #include statement would have nested

too deeply. if not ignored. Up to ei~ht (8) nesting levels are available in
LC.

9'i> •no closing brace• - The end of the last input file was encountered
. without a closing brace for the current function being found.

91> •no input file" • No input files were specified on the co111111nd line
which invoked LC.

92> •no lll.lltiple dimensions•• The array being declared has more than one
dimension, which is not supported. LG supports one-dimensional arrays only.

93> •no while after do• .. A "do" st·atement was compiled. but no ."while"
statement followed it.

94> •not a pointer expression• - the indirection operator, "*"• was used
with an expression which does not result in the address of an object in
memory.

• " · LC E.RROO ME.S.sAS£S

/

\

'_j

A P P E N D I X - E R R O R M E S S A 6 E S

95> "not enough memoryu - When LC began execution, not enough memory was
free for LC -to execute properly. Decrease the amount of modules in high
memory (filters, MINIDOS, KSM, SYSRES'ed overlays, etc.) and try to execute
LC again.

96> "output file erroru - An error occurred while writing to the output
file.

97> uoutput file open erroru - An error occurred when attempting to open the
LC output file.

98> •split 'for•• - The expressions in parentheses in a for statem,~t must
appear on the same line. This is a limitation of the LC implementation~ not a
limitation of the C language.,

99> •split function call• - All the arguments in a function call 111.tst be
given on the same line. This is a limitation of the LC implementation, not a
limitation of the C language.

10~> "too indirect" - The expression exceeded the amount of indirection
allowed by the declaration of the objects used in the expression.

l~l> "too many active loops• - LC allows nesting of loops and •switch•
statements to 25 levels. The loop or •switch• being processed would have
nested more than 25 levels.

102> •too many arguments• - There were too many arguments specified in a
function ca1_1. LC limits the nurmer of arguments in a function call to 16.
This is a limitation of the LC implementation, not a limitation of the C
1 anguage.

103> "unmatched arguments"• The argument being declared did not match any of
those in the argument list for the function.

104> "unrecognizable declaration" - The object being declared contains a
character which is invalid in the context of a declaration.

105> •unrecognizable option• - One of the options specified in the command
line was not a valid LC option.

Lt EH;.~@1 f~$$~~
r. = 3

.,. ..

.
- .. ,

, .

,~-:---,.,,__
,,_ .. \

'\

. --~
A P P E N D I X - S A M P L E P R O 6 R A M S

I* CAT/CCC*/
/* Utility to concatenate files to standard output */
/* adapted from "The C Prograrmiing Language• by */
/* Kernighan and Ritchie. •/
#include stdio/csh
FILE *fp;
main (argc, argv)

{

}

int argc,*argvCJ;

if (argc •• 1) /* no args, copy standard input*/
filecopy(stdin);

else
while (--argc)
{ if ((fp • fopen(*++argv,•r•)) •• NULL) ~,

{ fputs(*argv);

}

abort(• - open error.•);
}
else .
{ filecopy(fp);

fclose(fp);
}

filecopy(fp) /* copy a file to the standard output*/

{

}

FILE *fp;

int c;
while ((c • getc(fp)) !• EOF)

if (c !• putc(c,stdout))
abort(•Output file write error•);

abort(msg)
char *msg;

{

}

fputs(msg,stderr);
putc(eol,stderr);
exit(l); /* let system know about the error*/

CAT/CCC
0 - l

A P P E N D I X • S A M P L E

/* Test of cmdi() */
#include stdio/csh
#option INLIB
char bufCl~C,];
main()
{ · puts(•Test of cmdi O\n\n 11

);

puts("Enter command:•),
gets(buf);
Ctlld1Cbuf);

}

~· CMOITEST/CCC
n .. 2

PROGRAMS

_-....

I

-
i

/

'

A P P E N D I X - . ·s A M P L E P R O 6 R A M S

/* Test of and()*/
#include stdio/csh
#option INLIB
char buf(l~!j J;
main()
{ int re;

}

puts("Test of and()\n\n");
puts(•Hit break to exit back· to DOS\n°);
while (TRUE)
{ puts(•Enter command:");

if (gets(buf)••NULL)
ex1t(f8);

rc•cmd (buf);
printf("\nReturn code is Sd\n•,rc);

}

•
CMOTEST/CCC

D - 3

A P P E N D I X ~ S A M P L E P R D 6 R A M S

/* compare/ccc */
#include stdio/csh ·
int line. cl, c2;
FILE *fpl,*fp2;
main (argc,argv)

int argc, *argv;
{· if (argc!•3)

{ puts(•Format error: compare filel file2\n•);
exit();

}
line • l;
fpl • getfile(*++argv);
fp2 • getfile(*++argv);
while ((cl• getc(fpl)) !• EOF &

(c2 • getc(fp2)) l• EOF)
{ if (cl l• c2)

}

{ printf (•Difference at line %-l~d\n•. line);
exit(');

}
else 1f (cl•• eol) ++line;

1f (cl ••c2)
puts (•The files are equal\n•);

ehe
puts c•rne files are not of equal length\n•);

}
getf11e(fname)
· char *fname;

{ char *fp;
1f ((fp•fopen(fnap1e1 •r•)) •• NULL)
{ printf(•open error • S·2(hi\n• 1 fname);

exit(); ·
)

}
else return fp;

•
COtf>ME/CCC

0 ... 4

... f'

.y .

,....
,'
~

,,,L,

A P P E N D I X - . S A M P L E P R O 6 R A M S

/* decom/ccc *I
/* comnent stripper program - 09/14/82 */
/* removes all conments and multiple white spaces*/
#define eof -1
#define eol 13
int col, tab, string, conment;
int c;
main(}
{ col •tab• co111Dent •string• g;

while ((c•getchar()) !• EDF)
{ if (conment)

{ if (c••eol) tab• corm1ent •string• g,
else continue;

}
else if

if
{

}

Cc•••;•)
(1 string)
conment • l;
continue;

else if (c••eol)
tab•stringafj;

else if (c••'\ 11
)

string• !string;
if (whitespace(c))

{tab• l; continue;}
e 1 se if (tab)

{ putchar('\t'); tab• g; col++; }
if Cc•• eol)

{ if C col - g)
continue;

else col • -1;
}

putchar(c); col++;
}
exit(~);

}
whitespace(c)

int c;
{

if Cc •• • \ t• I c •• •· •)
return {l);

else ·
return(fj);

}

t\Eco.Klctt
D •· 5

····-····-------·----

APPENDIX_ ... SAMPLE ~PROGRAMS

/* Plot Hilbert curves of orders 1 ton*/
#include stdio/csh
#option IML!B
int· h, x,y ,x{l ,,yj ,.u, v;
main()
{ int 1,n, hi;

,puts(•\xQf\xlc\xlfhilbert curves\n•);
n • 4; hi• 32;

iar{I; h•hi; x{l•h I 2; yj•xi;
while (1 < n)

{
h • h I 2;
x{I • X" + h· / 2; y{II • yfJ + h / 2;
x • x~+ 1 * 32; y • y0+l~; u•x; v•y;
++1 1 p(l,1);
}

exit(i);
}
move()

{ int 1,j;
for (illlfllin(x,u) ; 1 < (max(x,u)+l) ; 1++)

for (j=min (y, v) ; j < (ma"(y~ v)❖l) ; jtt)
pixe 1(1 1 1,j);

u•x; v•y;
return(wl); }

iqin(a,b)
int a.b;
{ if (a> b) return(b); else return(a);)

max(a,b)
int a.,b;
{ if (a< b) return(b); else return(a); }

p(ty.p,1)
int typ, 1;
{ if Ci<• e> returnee); else

swi tch (typ) {

}

case 1: PM11 icn:t); X l3 x, .. h; u~oveO;
p(l,i-1); ya y-h; ri~ve();
p(l,1-1); x • x+h; move();
p(2,1-l); break; ·

case 2: p(l,1-1); y • y+h; move();.
p(2,1-l); x • x+h; move();
p(2,i-l); y • y-h; moveO;
p(l,1-1) ; break;

case 3: p(2,1-l); x • x+h; move();
p(3,i-l); y • y+h; move()i
p(3,1-l)i x • x-h; move();
p(4,1-l) ; break;

case 4: p(l,1-1); y • y-h; move();
p(4,1-1); x • x-h; move();
p(4,i-l); y • y+h; move();
p(3,i-l); break;

} ,

return Ci);

• HILBERT/CCC
D ... 6

APPENDIX - ·s AMPLE PRO 6 RAMS

/* linetest/ccc */
#include stdio/csh
#option INLIB
main()
{

}

int xl,x2,yl,y2,t,tl;
puts("\xlc\xlf"); /* clear the screen~/
for (xl=i, yl=i, x2•127, t • g; t <• 47; t++)

{ line(l,xl,yl,x2,t);
1ine(g,xl,yl,x2,t);

}
for (y2•47,t • 127; t >• g; t-)

{ 11ne(l,xl,yl,t,y2);
11ne(~,xl,yl,t,y2);

} '

exitUt);

•

ll"ffiSl/ttC
n ... 7

APPENDIX· SAMPLE'' PROG~AMS

/* xfer/ccc */
#include stdio/csh /* standard I/0 definitions*/
/* XFER - copy standard input to standard output
int c, bytes, lines;
FlLE *fpi
main()
{.

bytes• lines•~.
while((c•getchar()) 1• EOF)
{ putchar(c};

++bytes;
if Cc•• EOL) ++lines;

}

*I

fp • fopen(•*do•.•w•);
fprintf(fp, N%d characters. Sd lines•, bytes, lines)i ~

}

• XFER/CCC
0 ... 8

)-

'
.1

A P P E N D I X • S A M P L E P R O 6 R A M S

The following example program may help to illustrate the use of
call(). The program was provided by Rich Deglin.

/* test of syscall() */
#define CKDRV ~X4488 /* Note vectors are Model I*/
#define DATE 0X4470
ldefine DODIR 0X4463
#define DSPLY 0X4467
#define TIME 0X4460
#define AF 0
#define BC 1
#define DE 2
#define HL 3
ldefine IX 4
#define IY 5
#define CARRY 0
#option INLIB
int rc,d;
char *regs[6J,buf[l~0J;
main()
{ puts("Test of call()\n\n");

for (d•0;d<8;++d)
{ regs[BCJ•d;

rc•call(CKDRV,regs);
printf("Drive %d %s%s\n",d.,rc?"not •:--,"ready");
if (regs[AFJ&(l«CARRY)) ..

puts C "Ori ve is write p_r:9teJ:_t~_n_•) _; __ J___ _ __________ _
wait();
dt(DATE,"Date");
dt(TIME,"Time");
regs[HLJ••This is a message\n";
call(DSPLY,regs);
wait(};
regs[BCJ=(4<<8)+0;
regs[HL]=buf;
call(DODIR,regs);
strmid(buf+8~,buf,0,8);
strmid(buf+9(1,buf,8,8);
printf("ls %s free: %dK\n\n",buf+80,buf+90,buf[l8J+(buf[l9J<<8));
regs[BCJ•0;
call(DODIR,regs);
wait();

}
wait()
{ puts("\nHit any key"); getchar(); clscrn(); }
dt(addr,str)

char *addr,*str;
{ regs[HL]•buf;

call(addr,regs);
*regs[HL]•0;
printf("%s: %s\n",str,buf);

}
clscrn()
{ puts("\xld\xlf"); return 0;}

SYSOLL/CCC
iJ - 9

,,

• A

